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A psychometric function describes the relation between the physical intensity

of a stimulus and an observer’s ability to detect or respond correctly to it.

The performance dimension is expressed as the probability of a positive or

correct response, and measurements are based on a number of discrete trials

at a number of different stimulus intensities. Each trial consists of a single

stimulus presentation (in subjective or “yes-no” designs) or a set of stimulus

presentations of which one is the target stimulus (in “forced choice” designs)

followed by a response that can be represented as a single binary value: a

“yes” or “no” in yes-no designs, or a correct or incorrect response in forced-

choice designs. The psychometric function usually increases monotonically

with stimulus intensity, and sigmoidal functions such as a logistic, cumulative

normal or Weibull function are commonly fitted to the data, usually by the

method of maximum likelihood.

To compare sensitivity across different stimulus conditions, thresholds are

often compared, a threshold being the stimulus value that corresponds to a

certain performance level, and which therefore specifies the location of the

psychometric function along the stimulus axis. In many circumstances, the

slope of the psychometric function is also of interest, indicating the rate

at which performance increases with increasing stimulus intensity. In addi-
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tion, one or two nuisance parameters may need to be estimated: the upper

asymptote offset λ, which is related to the rate at which the observer makes

stimulus-independent errors or “lapses”, and (in yes-no designs) the lower

asymptote γ, which is the rate at which the observer guesses that the stim-

ulus is present even in its absence.

Statistical inference about the estimated threshold and slope of a psycho-

metric function often involves the estimation of confidence intervals for those

measures. Traditionally, probit analysis1 offered the most widely accepted

method of doing so. However, the confidence intervals thus obtained are only

asymptotically correct, as the total number of trials N tends toward infinity.

At the low values of N typically encountered in psychophysical experiments,

probit methods have been shown to be potentially inaccurate,2,3 particularly

in two-alternative forced choice (2-AFC) designs. In the last 15 years the

computationally intensive alternative offered by bootstrap resampling meth-

ods4,5 has been advocated in the context of psychometric functions.3,6–11

Bootstrap methods come in many forms, some of which are potentially

more accurate estimators of confidence interval boundaries than others.4,5,12

The current research aims to compare the performance of a range of confi-

dence interval methods, including probit methods and several different vari-

ations on the bootstrap. The different confidence interval methods are intro-

duced in chapter 2. Their accuracy will be examined empirically by Monte

Carlo simulation, in the context of psychometric functions obtained from

psychophysical experiments on adults, and in particular in the situation in

which nuisance parameters must be estimated. An additional aim is to follow

up and extend the work of Wichmann and Hill11,13 in using computationally

intensive methods to assess the relative efficiency of different distributions of

stimulus intensities in the estimation of psychophysical thresholds and slopes.

Monte Carlo tests of confidence interval coverage were carried out for a

number of different confidence interval methods applied to the threshold and

to the slope of a psychometric function. The confidence interval methods

studied included five parametric bootstrap methods: the bootstrap standard

error method, the basic bootstrap, the bootstrap-t method incorporating a
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parametric Fisher-information estimate for the Studentizing transformation,

the bootstrap percentile method, and the bootstrap BCa method in which

a least-favourable direction vector for each measure of interest was obtained

by parametric methods. In addition, standard-error confidence intervals were

obtained from probit analysis, and fiducial intervals for the threshold were

computed using the method described by Finney.1

The results are reported in chapter 3. In general, most of the confidence

interval methods were more accurate for thresholds than for slopes, better

in yes-no than in 2-AFC designs, and better under idealized conditions (in

which there were no nuisance parameters) than under realistic conditions (in

which there was a small non-zero rate of “guessing” or “lapsing” that the

experimenter must also estimate).

In many cases, confidence interval coverage was found to be inaccurate

even though the true value of the relevant measure (threshold or slope) lay

within the interval on roughly the correct proportion of occasions: despite

accurate overall coverage, two-tailed intervals sometimes failed to be properly

balanced with equal proportions of false rejections occurring in the two tails.

An example is the probit fiducial method for thresholds in simulated 2-AFC

experiments. Previous studies2,3 have suggested that probit methods are

accurate when the total number of trials N exceeds about 100. However,

while the current study found that the coverage of two-tailed 95.4% intervals

was very accurate overall, it was also found that coverage in the lower part of

the interval was too high, compensating for low coverage in the upper part.

Under the best conditions (thresholds in the idealized yes-no case) all

the confidence interval methods performed in a very similar manner. For

slopes in the idealized yes-no case, there was also little to choose between

the best bootstrap methods and the probit method: the bootstrap-t method

was found to be accurate, as Swanepoel and Frangos14 also found, yet in

the range of N studied by Swanepoel and Frangos and in the current study

(120 ≤ N ≤ 960), the probit method was equally accurate (there is reason

to believe that bootstrap methods may be more accurate than the probit

method at lower N , however3). In other conditions, where the performance
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of all confidence interval methods generally deteriorated, some methods were

better than others. The bootstrap percentile and BCa methods were found

to be the most accurate methods for thresholds, and although still far from

perfect, the BCa method was the best choice for slopes. The BCa method

was found to be particularly effective in the idealized 2-AFC case, in that it

was able to produce balanced confidence intervals for thresholds at different

performance levels on the psychometric function: thus it was less sensitive

to asymmetric placement of the stimulus values relative to the threshold of

interest. The bootstrap percentile method, by contrast, was only balanced

when the performance level corresponding to threshold was close to 75%. In

2-AFC, bootstrap methods were generally found to be considerably better

than probit methods in the range of N studied.

One of the observed differences between confidence interval methods was

their stability , i.e. their sensitivity to variation in N and in the sampling

scheme or distribution of stimulus values on the x-axis. The bootstrap stan-

dard error and basic bootstrap methods, for example, tended to produce very

different coverage results depending on sampling scheme, whereas the BCa

method was generally the most stable. Some previous approaches, in which

stimulus values are chosen randomly and independently in each Monte Carlo

run,15–17 may mask such differences between confidence interval methods.

In all the simulations, a change in the mathematical form of the psycho-

metric function had little effect. In order to allow direct comparison with

a range of existing literature, yes-no simulations were carried out using the

logistic function, and 2-AFC simulations were carried out using the Weibull

function. All the simulations were repeated using the cumulative normal

function, and one set of 2-AFC simulations was repeated using the logistic

function. In none of the cases did a change in the form of the psychometric

function produce any qualitative or appreciable quantitative alteration to the

observed effects of different confidence interval methods, sampling schemes,

and values of N .

Under realistic assumptions, the estimation of the upper asymptote offset

λ (and also the lower asymptote γ in yes-no designs) presents a problem. It
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has previously been noted13,18,19 that the maximum-likelihood estimates of

these “nuisance parameters” of the psychometric function are correlated with

the slope estimate, and that therefore any mis-estimation of γ or λ may lead

to mis-estimation of slope. A particular example of such an effect occurs

when an observer makes stimulus-independent errors or “lapses”, but when

the experimenter assumes idealized conditions in which the observer never

lapses, so that λ is fixed at 0 during fitting. In such a case, the slope of the

psychometric function is under-estimated, and the same is true whenever the

estimated or assumed value of λ is too low. The converse effect, a tendency

to over-estimate slope, can be observed when the estimate of λ is too high,

and such an error exacerbates the natural tendency, which has previously

been noted,7,18,20 for the maximum-likelihood method to overestimate slope

even in idealized conditions.

The nuisance parameters λ and γ themselves can be difficult to estimate

accurately, a problem which was previously noted by Green21 and illustrated

by Treutwein and Strasburger.19 The bias in the estimation of λ, for exam-

ple, depends on the true underlying value of λ itself. When the true value

is 0.01, as it was in most of the current simulations, there is a tendency, over

the range of N -values studied, for the maximum-likelihood estimate λ̂ to be

larger than 0.01. This leads to overestimation of slope, and inaccuracy in

the coverage of confidence intervals for both threshold and slope. In par-

ticular, slope coverage probability dropped below target for the bootstrap-t

and BCa methods, which were the methods that relied on the asymptotic

approximation to the parameter covariance matrix given by the inverse of

the Fisher information matrix. In the BCa method, coverage probability for

thresholds also dropped, an effect which was found to change according to

the underlying value of λ and the consequent accuracy with which λ could

be estimated.

In addition to the one-dimensional methods listed above, four bootstrap

methods were applied, in chapter 4, to the problem of computing likelihood-

based joint confidence regions which allow inferences to be made about

threshold and slope simultaneously. The basic bootstrap, bootstrap-t and
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bootstrap percentile methods were tested, along with a method that used

bootstrap likelihood values directly. The last of these proved to be excep-

tionally accurate, if somewhat conservative—however, it could not separate

inferences about threshold and slope from the effects of nuisance parame-

ters. The coverage of the other bootstrap methods was in some cases better

and in some cases worse than the performance of the corresponding one-

dimensional interval method. All four methods suffered to some extent from

bias in the estimation of slope, and were consequently imperfectly balanced

in their coverage of slope values above and below the maximum-likelihood

estimate.

Further simulations in chapter 5 examined the question of the optimal

placement of stimulus values, in order to achieve maximum efficiency and

minimal bias in the estimation of thresholds and slopes from a 2-AFC psy-

chometric function.

When efficiency of threshold estimation is the important criterion, probit

analysis predicts that, for finite N , the optimal distribution of sample points

about the threshold to be estimated has a certain non-zero spread, depending

on the number of observations and on the confidence level desired. This is at

odds with the asymptotic assumption voiced by several authors, and widely

followed as a guideline for stimulus placement in adaptive procedures, that

optimally efficient estimation of thresholds is to be achieved by placing all

observations as close to the threshold as possible. Monte Carlo simulation

confirmed the probit predictions: despite the fact that probit intervals tend

to be poorly balanced in their coverage (chapter 3) in 2-AFC, and have

previously been shown to be inaccurate,2,3 the predictions of probit analysis

were found to be qualitatively correct, in that probit interval widths were

highly consistent with Monte Carlo simulations in predicting the relative

threshold estimation efficiency of different sampling schemes.

The mean and spread of sample points proved to be a fairly good pre-

dictor of sampling efficiency with regard to thresholds, and the even spacing

of samples proved to be an efficient strategy, assuming that optimal mean

location and spread could be achieved. However, there were notable cases in
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which certain uneven sampling patterns were found to be more efficient: in

particular, one highly efficient strategy proved to be to place a small number

of trials at very a high performance level, and then concentrate on levels

closer to threshold than the optimal spread would otherwise indicate. The

gain in efficiency, relative to evenly spaced sampling, was nevertheless quite

small.

The relationship between efficiency of slope estimation and sampling

scheme was not so straightforward, and was not fully explained by the mean

and spread of stimulus locations. Predictions from probit analysis were also

less consistent with the results of Monte Carlo simulation in the slope results

than in the threshold results. The simulations concentrated on the realis-

tic 2-AFC case, with the underlying value of λ set to 0.01: as mentioned

above, this condition is particularly prone to bias, and nearly all the sam-

pling schemes studied overestimated the slope of the psychometric function

by a considerable amount.

Within the range of N studied, there was an appreciable change in the op-

timal spread of stimulus values as N increased: for thresholds, the optimally

efficient sampling scheme became narrower, converging towards the asymp-

totic ideal of zero spread. For slopes, optimal spread converged towards the

asymptotically predicted (non-zero) value.

With regard to thresholds, there was little or no effect of k, the number

of blocks into which the N observations were divided: the mean and spread

of the optimally efficient sampling scheme were not affected, nor was the

distribution of bias and efficiency scores measured outside the optimal region.

For slopes, there was little effect when k exceeded 5, although there was a

discernible advantage to sampling with smaller numbers of blocks (k = 3 and

k = 4): the simulations imposed a minimum spacing between blocks, and

the 3- and 4-point schemes were able to concentrate more closely on the two

asymptotically optimal sampling points.

The simulations of chapter 5 addressed the question of what the optimally

efficient sampling schemes look like, without addressing the question of how

such sampling is to be achieved relative to an unknown psychometric func-
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tion. In practice, a larger k will be useful from the point of view of sequential

estimation, as it allows a greater number of opportunities to re-position the

stimulus value according to the current best estimate of the optimal loca-

tion. Sequential stimulus selection has so far been ignored in the application

of bootstrap methods to psychometric functions.3,6,7,11 However, it can be

presumed to occur to some extent in many experimental designs (includ-

ing many that are described as “constant stimuli” experiments) whether the

stimuli are selected “by eye” or by a formally specified adaptive procedure.

The simulations of chapter 6 suggest that the assumption of fixed stimuli

can lead bootstrap methods to produce confidence intervals whose coverage

is too low. Furthermore, sequential selection introduces an increasing rela-

tionship between threshold coverage and N , a fact which may undermine

one of the principal advantages of the bootstrap, namely that it is less sen-

sitive to error than asymptotic methods when N is low. It is recommended

that future developments of bootstrap methods in psychophysics should con-

centrate on formal specification of the algorithm for stimulus selection, and

that bootstrap replications of the experiment should include simulation of

the stimulus selection process, using the same algorithm as that employed

by the experimenter.
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