[vslist] AVA UK Christmas Programme
Tim Meese
t.s.meese@aston.ac.uk
Tue Dec 7 11:11:01 2004
--============_-1109682702==_mr============
Content-Type: multipart/alternative; boundary="============_-1109682702==_ma============"
--============_-1109682702==_ma============
Content-Type: text/plain; charset="iso-8859-1" ; format="flowed"
Content-Transfer-Encoding: quoted-printable
This has been circulated over multiple lists
----------------------------------------------------------------------------=
-------------------
Room 1.20, Hills Building building, University of Birmingham.
----------------------------------------------------------------------------=
-------------------
Images, Perception and Psychophysics
10.55: Welcome
SESSION 1
11.00 Steven Dakin
Assessing local and global factors in motion perception using equivalent noi=
se
11.30 Tim Meese, Robert Hess & Cristyn Williams
Size matters, but not for everyone: Individual=20
differences for contrast discrimination
11.45 Mark Georgeson & Tim Meese
=46ixed or variable noise in contrast discrimination? The jury's still out=
=8A
12.00 Andrew Schofield, Gillian Hesse & Mark Georgeson
The role of texture amplitude in shape from shading
12.15 Brian Wink, V Salvano-Pardieu & A Taliercio
The effect of illusory brightness and illusory=20
contours on the detection of target lines=20
superimposed on an Ehrenstein figure
12.30 - 1.30
LUNCH & POSTERS
SESSION 2
1.30 Johannes Zanker & Jochen Zeil
Optic flow in natural environments-a downunder perspective
2.00 Hiroshi Ashida, Noriko Yamagishi & Stephen Anderson
Visually-guided actions are dependent on luminance signals
2.15 Nick Scott-Samuel, J. J. Marsh & U. Leonards.
Similar processing in visual search and motion perception
2.30 A Tavassoli, I van der Linde, L. K. Cormack & A. C. Bovik
Accelerated classification images for the=20
psychophysical investigation of visual search
2.45 Michael Wright & Louise Lakha
Integration of spatial frequency information in=20
localisation and discrimination tasks
3.00 - 3.30
COFFEE AND POSTERS
SESSION 3
3.30 Lewis Griffin
Geometric texton theory: The 1-D, 2nd order jet
4.00 Alexa Ruppertsberg, Fazila Mayat, Anya Hurlbert & Marina Bloj
Sensitivity to colour gradients and its dependence on complexity of surround
4.15 Sophie Wuerger, Philip Atkinson & Simon Cropper
The unique hues revisited
4.30 P. G. Lovell, T. Troscianko & C. A. Parraga
Distance judgements based on Rayleigh Scattering:=20
The detection of colour changes with distance in=20
blue-yellow opponent channels
4.45 Yazhu Ling & Anya Hurlbert
Memory colours of real, familiar objects under changing illumination
5.00 - ???
WINE AND POSTERS
Posters will include:
Keith Langley
Leaky predictive coding: A subtractive and=20
divisive fast/slow gain control model for=20
contrast coding
Michael Wright
Attention modulates fMRI activation of motion and form sensitive areas
Ben Vincent, Iain Gilchrist & Tom Troscianko
Progress towards a robotic active visual system
Cyriel Diels & Peter Howarth
Visually-induced motion sickness in the fore-and-aft axis
S. Artemenkov (TBC)
Human visual system functional range and some of=20
its spatial-temporal characteristics
Trade stands:
CRS
Tracksys
Suggested accommodation:
The University of Birmingham Conference Park
Lucas House
48 Edgbaston Park Road
Edgbaston
Birmingham
B15 2RA
UK
Email address: <mailto:conferencepark@bham.ac.uk>conferencepark@bham.ac.uk
Telephone: 0121 625 3383
=46acsimile: 0121 414 6339
Copperfield House Hotel
60 Upland Road
Selly Park
Birmingham
West Midlands
B29 7JS
UK
Tel: 0121 472 8344
Fax: 0121 415 5655
--
-------------------------------------------------
Dr Tim Meese
Neurosciences Research Institute
Aston University
Aston Triangle
Birmingham
B4 7ET UK
Voice: +44 (0)121 359 3611 (switchboard)
Lab/Office: +44 (0)121 204 4130
=46ax: +44 (0)121 333 4220
e-mail: t.s.meese@aston.ac.uk
http://www.vs.aston.ac.uk/Staff/TMeese.html
http://www.vs.aston.ac.uk/Research/research.html
--------------------------------------------------
--============_-1109682702==_ma============
Content-Type: text/html; charset="iso-8859-1"
Content-Transfer-Encoding: quoted-printable
<!doctype html public "-//W3C//DTD W3 HTML//EN">
<html><head><style type=3D"text/css"><!--
blockquote, dl, ul, ol, li { padding-top: 0 ; padding-bottom: 0 }
--></style><title>AVA UK Christmas Programme</title></head><body>
<div><font face=3D"Times" color=3D"#000000">This has been circulated over
multiple lists</font></div>
<div><font face=3D"Times" color=3D"#000000"><br></font></div>
<div><img src=3D"cid:a0611040abddb95c125a0@[134.151.100.63].1.0"></div>
<div><font face=3D"Times" color=3D"#000000"><br></font></div>
<div><font face=3D"Times"
color=3D"#000000"
>--------------------------------------------------------------------<span
></span>---------------------------</font></div>
<div><font face=3D"Times" color=3D"#000000"><br></font></div>
<div>Room 1.20, Hills Building building, University of
Birmingham<font face=3D"Times" color=3D"#000000">.</font></div>
<div><font face=3D"Times" color=3D"#000000"><br></font></div>
<div><font face=3D"Times"
color=3D"#000000"
>--------------------------------------------------------------------<span
></span>---------------------------</font></div>
<div><font face=3D"Times" color=3D"#000000"><br></font></div>
<div><font face=3D"Times" color=3D"#000000"><br></font></div>
<div><font face=3D"Times" color=3D"#000000">Images, Perception and
Psychophysics<br>
<br>
10.55: Welcome<br>
<br>
SESSION 1<br>
11.00 Steven Dakin<br>
Assessing local and global factors in motion perception using
equivalent noise<br>
<br>
11.30 Tim Meese, Robert Hess & Cristyn Williams<br>
Size matters, but not for everyone: Individual differences for
contrast discrimination<br>
<br>
11.45 Mark Georgeson & Tim Meese<br>
=46ixed or variable noise in contrast discrimination? The jury's still
out=8A<br>
<br>
12.00 Andrew Schofield, Gillian Hesse & Mark Georgeson<br>
The role of texture amplitude in shape from shading<br>
<br>
12.15 Brian Wink, V Salvano-Pardieu & A Taliercio<br>
The effect of illusory brightness and illusory contours on the
detection of target lines superimposed on an Ehrenstein figure<br>
<br>
12.30 - 1.30<br>
LUNCH & POSTERS<br>
<br>
SESSION 2<br>
1.30 Johannes Zanker & Jochen Zeil<br>
Optic flow in natural environments-a downunder perspective<br>
<br>
2.00 Hiroshi Ashida, Noriko Yamagishi & Stephen Anderson<br>
Visually-guided actions are dependent on luminance signals<br>
<br>
2.15 Nick Scott-Samuel, J. J. Marsh & U. Leonards.<br>
Similar processing in visual search and motion perception<br>
<br>
2.30 A Tavassoli, I van der Linde, L. K. Cormack & A. C. Bovik<br>
Accelerated classification images for the psychophysical investigation
of visual search<br>
<br>
2.45 Michael Wright & Louise Lakha<br>
Integration of spatial frequency information in localisation and
discrimination tasks<br>
<br>
3.00 - 3.30<br>
COFFEE AND POSTERS<br>
<br>
SESSION 3<br>
3.30 Lewis Griffin<br>
Geometric texton theory: The 1-D, 2nd order jet<br>
<br>
4.00 Alexa Ruppertsberg, Fazila Mayat, Anya Hurlbert & Marina
Bloj<br>
Sensitivity to colour gradients and its dependence on complexity of
surround<br>
<br>
4.15 Sophie Wuerger, Philip Atkinson & Simon Cropper<br>
The unique hues revisited<br>
<br>
4.30 P. G. Lovell, T. Troscianko & C. A. Parraga<br>
Distance judgements based on Rayleigh Scattering: The detection of
colour changes with distance in blue-yellow opponent channels<br>
<br>
4.45 Yazhu Ling & Anya Hurlbert<br>
Memory colours of real, familiar objects under changing
illumination<br>
<br>
5.00 - ???<br>
WINE AND POSTERS<br>
<br>
<u>Posters will include:<br>
<br>
</u>Keith Langley<br>
Leaky predictive coding: A subtractive and divisive fast/slow gain
control model for contrast coding<br>
<br>
Michael Wright<br>
Attention modulates fMRI activation of motion and form sensitive
areas<br>
<br>
Ben Vincent, Iain Gilchrist & Tom Troscianko<br>
Progress towards a robotic active visual system<br>
<br>
Cyriel Diels & Peter Howarth<br>
Visually-induced motion sickness in the fore-and-aft axis<br>
<br>
S. Artemenkov (TBC)<br>
Human visual system functional range and some of its spatial-temporal
characteristics</font><br>
<font face=3D"Times" color=3D"#000000"></font></div>
<div><font face=3D"Times" color=3D"#000000"><u>Trade stands:</u><br>
CRS</font></div>
<div><font face=3D"Times" color=3D"#000000">Tracksys</font></div>
<div><font face=3D"Times" color=3D"#000000"><br></font></div>
<div><font face=3D"Times" color=3D"#000000"><br></font></div>
<div><font face=3D"Times" color=3D"#000000"><br></font></div>
<div><font face=3D"Times" color=3D"#000000"><br></font></div>
<div><font face=3D"Times" color=3D"#000000"><br></font></div>
<div><font face=3D"Times" color=3D"#000000"><br></font></div>
<div><font face=3D"Times" color=3D"#000000">Suggested
accommodation:</font></div>
<div><font face=3D"Times" color=3D"#000000"><br></font></div>
<blockquote><br></blockquote>
<blockquote><font face=3D"Arial"><b>The University of Birmingham
Conference Park<br>
Lucas House<br>
48 Edgbaston Park Road<br>
Edgbaston<br>
Birmingham</b></font></blockquote>
<blockquote><font face=3D"Arial"><b>B15 2RA</b></font></blockquote>
<blockquote><font face=3D"Arial"><b>UK</b></font></blockquote>
<blockquote><font face=3D"Arial"><b>Email address:</b></font> <a
href=3D"mailto:conferencepark@bham.ac.uk"><font
face=3D"Arial"><b>conferencepark@bham.ac.uk</b></font></a><font
face=3D"Arial"><b><br>
Telephone: 0121 625 3383</b></font></blockquote>
<blockquote><font face=3D"Arial"><b>Facsimile: 0121 414
6339</b></font></blockquote>
<blockquote><br></blockquote>
<blockquote><font face=3D"Arial"><b>Copperfield House
Hotel</b></font></blockquote>
<blockquote><font face=3D"Arial"><b>60 Upland
Road</b></font></blockquote>
<blockquote><font face=3D"Arial"><b>Selly Park</b></font></blockquote>
<blockquote><font face=3D"Arial"><b>Birmingham</b></font></blockquote>
<blockquote><font face=3D"Arial"><b>West
Midlands</b></font></blockquote>
<blockquote><font face=3D"Arial"><b>B29 7JS</b></font></blockquote>
<blockquote><font face=3D"Arial"><b>UK</b></font></blockquote>
<blockquote><font face=3D"Arial"><b>Tel: 0121 472
8344</b></font></blockquote>
<div><font
face=3D"Arial"><b
> Fax:
0121 415 5655</b></font></div>
<div><br></div>
<div><br></div>
<x-sigsep><pre>--
</pre></x-sigsep>
<div>-------------------------------------------------<br>
Dr Tim
Meese <span
></span> <br>
Neurosciences Research
Institute <span
></span
> <span
></span> <br>
Aston
University <span
></span> <br>
Aston Triangle<br>
Birmingham <br>
B4 7ET UK <br>
<br>
Voice: +44 (0)121 359 3611 (switchboard)<br>
Lab/Office: +44 (0)121 204 4130<br>
=46ax: +44 (0)121 333 4220<br>
e-mail: t.s.meese@aston.ac.uk<br>
<br>
http://www.vs.aston.ac.uk/Staff/TMeese.html<br>
http://www.vs.aston.ac.uk/Research/research.html<br>
--------------------------------------------------</div>
</body>
</html>
--============_-1109682702==_ma============--
--============_-1109682702==_mr============
Content-Id: <a0611040abddb95c125a0@[134.151.100.63].1.0>
Content-Type: image/png; name="P54BD4FA9"
; x-mac-type="504E4766"
; x-mac-creator="70727677"
Content-Disposition: attachment; filename="P54BD4FA9"
Content-Transfer-Encoding: base64
iVBORw0KGgoAAAANSUhEUgAAAesAAAISCAIAAABj5HC6AAAABGdBTUEAANkDQtZPoQAA
AAlwSFlzAAALEwAACxMBAJqcGAAAACR0RVh0U29mdHdhcmUAUXVpY2tUaW1lIDYuNS4y
IChNYWMgT1MgWCkA9umUBAAAAAd0SU1FB9QMBxEQI+gdi0UAACAASURBVHic7b2/cxXH
mv8/+nxvsgmWFG6Vb5VQuBAgqTbACVVIVOHEDpCQAzu7kgIc2hIFwQZQSNxo6xJIIrMD
IeHATqBKgi0nsIkEAdRmQlWXZCNJ+B843/c9z+XZh+6ZPj1zfs3Meb+CU2dmunue7ul+
9zPdPTNDjUYjIYQQUkH+X78NIIQQUhAqOCGEVBUqOCGEVBUqOCF14ODgYGRkZGhoaGNj
o9+2VJKTk5O9vT2U3srKyuTk5NmzZ/ttURRD9ZjJRMUNBxgbG3v37l1vjBlkUMjj4+O5
okxMTMzOzi4uLkKAumTVIADRefXqlfyvR6PuGah7m5ubzk5US3SKfbEnFzXxwRtN9vf3
h4eH7X4I9/HxMQ5RvnsDPBe5FoeHh861yAK6c/PmzdHR0Uo0mB4Dr3Bubi7GH1T5JnmB
340aC6GAXOjOmZmZPpoUT00UXPDvfZaXl+nZ9YWzTeweXIvGR9Ba1tfXHYmfmprCnWxv
zSwvkBVU3StXrjx+/DjXbc309HT3rKoxI010Ez54H42Jp1YKnjQHs+wmRKFflhCHy5cv
6380Fdy64sbIej1gbW2t53aVlOfPn5+ensp/W3RZoEfELzrF1dXV7lpWX+ydelV88JqM
gyvOgHjNclctnGtxeHjojwbs7Oxcv35dNzldodhx7f39fWz2157aA+dvdHRU/qMjrMrt
YK18cGcg1fHvSC/xG0DqYO7c3JzdPDo66qJNlcKOa1O+e8De3p7+r9C9e60UHF6e3cy7
KIJ0ELiNdrMqo4olAbcm+p9F1xsq2mXWSsGd6fgKXYb64dwPZY0qOq565PKV2vP8+XP9
X5UB2apjffCYiYeSUCsFt9cgCTovskhraGjIv7XHIbQZHPJbDuRmdXUVUXDUuf33QWBZ
4zzUBLGwicRXVlbCbVJsk4j4xf/IoWHNlIDTBcbynMBiXgfHoJ3xkKwRLeeSBe5eI3On
wbT/RrCsa61sbGwgvKQsZW694GKWoA/LOq+eDueyZS7VA4fs8uS1tTU9l7+wCqfW1Fq6
LDgXrJUKLKAqBp4AQuKwJzULckhqacu2ECBvM+mUSRJYi8LOOiTV6jUbNcLJGm7k/TCH
h4fOcit7dGFhIeuQzPVHFt29e/cCZT47O5say19g56B9khNxd3c3tbtKPdHx8TH2p6aP
swcylQvHntRrARxLtre3/TCRucOVdVJrfLrIN7U0YFhq4ojVWUv0dE5nhionh1KviAOq
rj3R8vKyEyC1kBvBi55VMsisrY2BQ4HzhsnbTDplEqpZoKGlXvrSUh8FRx1tWZv9Go8G
qdGdpqVyllX7s8yQRo5zycNEaM9OTYVS+7H07PgjeodKmeq62hqGiNrr6BltNp0Toe5K
1lQrcRbNnapJ+8SUlTNv4bec+Nz5V1ZSs701rkJq4lrgdpW6UxTtWKJ1zHcCUnNtpxCy
1CS1s8/qgO2TbnrdHWNsnbSZ9VP2M5jkV/C8zaRTJvkXveH14lkOVjmpj4JDiez102aj
TDRBMFt3paFKfULltt2AXEjRVgRzdNxPv2Hani+F1jZUVt82PSoV2s+UNmYNYHXfkafU
eqyp4Y9jgCh7qgtcgJbS3EjrMh0/PT53cmVxUtuScQkckbK5RmBJHEJgC1zOi532jHkt
wYmkPAV5lEmMgVU4tVNXnZKxZqeqCbolWIhgThmmBrapOSVsFdPWZ3nPgW0L6vtjv2TH
nje1LQQo0Ew6YpItLqcJ2KbtXOKSUx8FdzpwvzZr9bXtXDQL11uOWunRFqK+gHXo7BOG
gm2Wjkbb9uw7SjZiuE47h9QeJ03NhVOPNXxqAfpmF8ZRKGlsKEZJP/WBTH+YJT53qVfW
sSExXaNtyf79UKOpBbaFF7DEnh1XX2TUphm4rNbZTDXPlpVNxw9s67NfY53bVhvLOSpx
0ab0FNbn8FMOUKyZdMQkDeC7FFb9ff+mzNRHwZ2brECtsiHFs9ZKYB0WGc20HbIVHf8y
61FnsLLxaQ/vdy22Y/CTTW1jjU9bgtN0NYOOT63hu+1lOHe1ci2yRh7FfXZSKJC7hiln
nEtsQE5xieU2OdU8xwEXbFEXs8TpS2CP00VlXdbGp0qUNX8gOPc6fjHaipfaPQfMsHqK
LNxrkhoxbKRD4WbSpkmB6+gUY3xeykDFzA3gTDEFOlLbFaNO2JqkdQiHUDnsofBlttIf
rh++egaStXEdx8HqfurAi98G7Imk38rV9uJx5orlWsiAuzZgZAebWZepQO4axpOS65g1
rK8px9z+F7PE1jF7GyfYy+rbEKgPDrbWpc4iBI62PJd1dJBZ2xacxf5hI7MMzttM2jQp
0JnZ2/dqTWM26qTgyacEBgQ0jAiKbZaqL/4hW/l89yGrnTe85Ra+aAZqnnU6nJFZ3W8l
QOti6i1I1juPdKA/q8Ty4gxw5x2cKZa7hilJyWlqjqwv1vL2v31LUmuLP0qeal7LDsZW
Lb+7sjU21c6Af9AwF1E6IVuYVvL83AVop5m0aVIgp/busFrTmI3aKLjTgSfZfoHTVzsv
zLOHHC8gvKohq9XFGGaPZlVrpztxlB3NHg14uIlO7seUkkOnXPLIa5FFsdw5A99Z2urP
gnTcEhsrSevArC8ZmF1suTQoPKxnNTH1XseWmL8gMlCYti2kjtSn0mYzacekwFSTM91d
rWnMRm0UvOVCFMWZ8MySxcQTU3vIaXUBlwqWiL8QMCyr8tnOxjmjM+iPZHHeGP1FplAC
Wc865fKnsoi/FlkUy51zZbMc//hR5sKW2E4i1adT5fWntQOOgkPL0Vub09TSsHY6qufo
WqAtxN9gtdlM2jEpK6ey7ig8EVVyaqLgztRZwHmxV8sJZpurcyg8yuYMz+l+0ZTwUhM/
cfH1tL5CAsKrDwsvIMF5/UcqiiVlabkoqCXFcmevbKDbyHokpIOW2Fi+m2+V19fosFtt
sYqWmt+WlzVrDWsjOKkYXgoZoM1m0o5JNqf21DjRdJMC2SkJ1bM4FWeEN+C82GCOM2VH
b51DtofwHdXUliC1CpZY1yPrtl3WvdjWK0uSs+7TCzShrJCFG2QWzoBmrqVmQjF7ClSA
HljiH3WWQtlDWcv7UrHlnFrI4aRsR+L3srYqOpXWtoVcN1htNpN2TErttuWM4cmA8lMT
BXdWqmU5L4EbT9t4/HtbK+7aWlTl/TTFrZaG4Q96woysO3HxR1oOxoUbpxhgexppJy1T
8wdD4eghncINNXAtAuTNXcO7jwmc1AZL7SBt4m1a4pebrWb+cG3WgmjE8kUt1VvPWnLu
5zSwpDI8PpO67DpmBM9PM76ZtGlS1qllOZYe0ktZobGUOii4/zx91g1vYD2J/6Cm4tQe
tCV5P4a2T+fUkpT251b9ZRg6SWu99tHelstC7Bn9xiON07Z5MQlZ9lNWH9xO7jtfHM3l
R0deiw7mruEN3QQSt/nyr4Kko/ktYEl4BYjqVOoEoFVVmbvWB03DU38y7IYo1ou0uuac
LjDF0mi17MqeV2YFbFsI4NSKXM2kTZNsAOkO9eo4U8cSt0LOeB0U3JmBTLIbcGCayB4K
q4NWFA3gH0UlUDX0j6beJNoAqEBh4bPW6gOE0ipkZsZRauvgIDuauBadNbjR6iHSAP6T
kPFxC+fOjxJI3BnkkcT1MVH7uoxiltj0ZSW4Pk8oWuw/3aOkvt8jabW4QnE6jKzXjOjF
dTKbmgUnTedeJzVMFn7E+GbSpkl+APXS/FcedfDtQD2g8gqO5uGvrMgabrZhbN11vPjw
SlW0W0deneXPgdqT2uZTEwnkopFRa5NPX1llCb/y0B+0sYof/7IUZM1fci5vm4lMoVju
Gq3WXztGxpdDAUvCX4YKrEFspCl4Vnj/vQWpXX7AmIDs2mDOeIK/0Ch+BWo7zaRNk5xq
aXtEqx64rBUaPxEqrOAx3y6xl0puPHEtUXWc5ieDBvKKnKy3PiXNAbvU+qpjDqnrRqT2
4DdQOfxXr2VVZZsd27UgZFjxkTWnxLCZNVmqih85Ah7zffRcrk3e3IlHjDzaO4ws5FUK
9vFueQdO+5Y0PtUau2pQ3mnV0jC5RuH15g3zapdwvWo0ewXnlU+BGfLGx05LC9MPqeeN
XwmuKRdrJu2bFDi1vq2zwJR7GaiwgtcDFQj8yiP+vvZ16dn3LOwQSqfedTUgpL5LkpDu
Uatv9FSOxcXF8fHxwyY7Oztzc3N7e3v+sP7U1JTz0bKusra2Jn/g0QS+a0N87GWq0nde
SGWhgvcN6PXm5ibuatHsrVBivz+gvLKy0hur3r17J5+bwj0BOpjenLQ22O9b8gvFpAcM
NeI+70Q6CxRZXN39/f2szxtqGKE3V0o+GCj9Sg9OVzNGRkZOT0/lP+6reAdDug0VvD9o
Uw+U/8nJyejoqG724Ert7Oxcv359bGwM8u1/VJeEwe3L+Pi4brJlkR7AUZT+oJ5a4PPw
9gvoMYs92ufhw4fLy8swifJdgL29Pf3PIRTSG/7UbwMGFPi5R0dHSVOasxxeOwz9448/
9sAqq0EkL3YQfGpqqo+WkMGBPnh/WF1dlT/Q8bNnz2JTx53hAm9sbGDns2fPZM/6+joX
NpQf2/+Fn+shpFNwHLxvQKaXlpbCYXAzvrm5mTXVScqDM2mxu7vLTpf0ACp4P0Gzh47j
7nt/f19HxpOmcKP9z87OUrurAhzwubm5qakpXDK5fJxLID2ACk4IIVWF4+CEEFJVqOCE
EFJVqOCEEFJVOA5O+sbJycn+/r68iQV/sBl4vqkkVNHmg4OD6enp09PT9fV1vuumZlDB
S4fzcHYMExMT8iKqCq1/GBoacvaU/2UsVbQ5+fiuG/nP9l4zOIpSOs6ePStv/j08PAx/
W0dB+7x58+bo6Gj51USRPNrvWpR/AXUVbU6a1aPfJpBuQQUvL2eb2D32MyL6aUcbYGpq
yr5NpfzYm4bLly/30ZJ4qmiz0Ju365BeQgWvElYvoCOLi4vv3r1zHuC2L6QtP/ZJ9Kq8
S6RyNsuH3tHZ67scSG3gOHipcQZeU185La+E1U0Ievnn1hTNYIXMrqLNpK7QBy8v/nhI
6hcD5ubm7Ka88rASWPmrxIByUk2bSY2hgpcX+US3Ur9XTlfxhdpVtJnUGCp4eXEWlmR5
fI6rHrl8pQzYF2pXxZ+tos2kxlDBy4szHpL1ymnnswxZc2vy8ryhj5w9e1YmQv2Q8nZy
hEl9+gPprK6uIimECS8/RzqTk5NyOoRElJ2dnSzLnQEidEsrKyuIhbgthRK5gKlis4Ao
OHsgCnpHKQ1/YErNxtn98mnT5vbLNv46ypsvJS8xL7lseb0K2EC6ToOUFecmfX9/PzXY
7OysDba9ve0EOD4+dsIocNhtSJzC6Sf809mjCwsLqSYhndQRBiSuYQ4PD3X/9PS0jb68
vBxZSwNZAzjkR8F5nSiB7DsZbMfm9ss2/jrmKsNG3PUqYAPpAVTw8hLTAq2mpDY5CLq0
LlX23d1dbYRWJvw275/UGZpHUk4AtHB54AWWSJdj163b0927d0/T0XXuCJwqJal5R/o6
ZKS5k5VzCjZtFD+POF1qxNTyLGxz+2Ubfx39pwSSbHmNv165bCA9gwpeUlpKc6PZ2By3
zvHT0cBS5aDxsTVqU5xogpM6QubEshLmH0V0sQeNHLY5pmInouse68qJeaLICOM4eiqy
Fmunk2trpI0recS5JO+CCLGkBg1CFrTQ/DwWs7n9so2/jrgzgD04kVM3sm5H4q9XvA2k
l1DBS4qjI3LPjpaJVtfIeCDTH2bRZ/BST5E0F5jr6fzz+tJpH+pzhhGsZDier4CjtvFb
fUFckULNgvVqrY4Itnuzz6mqJalSqInbPEJ3RFitbVlKWszm9ss2/jraOmBz4V+RvNcr
3gbSS6jgJcW57xadylpnIi6en0hABLOw/qmvMgFRsAY7Dp3GTU0KSiEeX5b6+D2T9XbD
GU9VHGsqRMo5dSB6OzY32ijbAtfRuYfzS6nw9Yq3gfQAKnhJcV5hId6QDDuqjkNHsOnf
1So2BYSELmRNhyq2YTu33laAfFEIaJOP9UZxFkSxuuCMCDtxrYudOrjUaKXg6iyPNXHk
0mqfzUs7Ngvtl238dbQjNqmllOt6FbOB9AAqeElxBriL3aJmvckIiS8sLKR6XlZlnAEK
6/k6M2NW3fxhDR875oukHBGxR/0BXKtNqeeyEhwWr8Qbr2h8KqY2/XZsFoqVbaPQdbQJ
+nOMea9XMRtID6CClxSnnRRLxLmV9gkMnSef3i87STmiYLUpZkbLWZHm9E/WBj81fzrR
wXGWnaNhb7fx6ctjbfm0Y7MfJr5s/QA+/nW0A25+KeW9XsVsID2ACl5GnGnMyPvcVOAc
QSyynv/2PVAb0rZ8Z1zeafY2VkxLDi+TsCfynTt7rtRbE2uqP0cXGMoQVPscX7gdm33L
48tWyHUdHbUNWxKvvHnrEukBVPAy4iwsy7orzwvaqpOy37ytTqnK+P6XI1LW44uxxCbl
eIjhBRuNVmPcjU/lKdwB+Fppc+pM2bVjs1CsbH1aXkc70JRqT97rVcAG0htY6GXEuWGP
HKl0yGpRgfXOjQydgntlTfIHl3M1Y2tA+GHC1GUP4XNZQUzt+cLR7RCKVdI2bfZPnats
U1OLXLeeWnlyXa9iNpDewPeilBHHLyvwIRjnZSkW+8oOp6twXpIlIVdXVycnJ+1rOpz3
2TqkfiTo4OBAz2tfDuUnZd/FoVGyvh7nn2tzc1P/+69Gsen4owFITaPDjbVZbt/mYmVb
7DraWFp5spJqeb2K2UB6RL+7EJKCc40KLESR+2j4d/4tufpNsqg59ZCwvb0Nj1I8WTsC
EJ4384ee5XZbncHAOIbzMA42YRJO7TzimHUuu6QvdXg3vI5FHXA/C23aXLhsC1xHp/tH
MHn4y3r3ua5XsbpEegMVvHQ4TT0p1Mva0QA0SO0DdCUG9CXQIBWRmKynHBXH/5IhAn1w
VN+5ITh6FzYg8aTWGX5VAdKsOafLslNWguszrjIS4j/d0xGbC5dtgesYY0+u61WsLpHe
QAUvF2gJ/sJbNJW8LST8lvCssVpHTXRZm12Blzq47EQMnMsm5Y/5+otwUu8/sl60m7Sa
MwhElLip5dwRm4uVbYHr6L+Pwbcn/noVs4H0DCp4WYj5jnj869/gQ0GPnKFeeYww3BmI
hytvgNKd1gvLegRUXu2krR3ZkfcrOcGQlDxKCvN8b1df1hF+1rTRnDy0chyTtcanrrRd
NSjvtMqK1SmbC5Rtgeuo9uASBOyJvF7FbCA9g186Jq05e/asfG4CDT514qsS7O3tXbly
Rf6X5yPF9Shb0i+4FoW0AEqnXwtaXV3trzHtYBeHlOQDabUpW9IvqOCkBXapXHgdYcmx
KwJL8pHi2pQt6RdUcNKCrCXSlcOuNSyJD16bsiX9guPgJARu88fHx5Om05r1WE0l0IwI
Zaj2tSlb0kfog5N/IN9Z9z1T7JQ/jx8/7rlRncQ+WNjjIZTaly3pI3/qtwGkFJw9e/b0
9NRZLr2zsyPisr29jQB9Mq0z2EHwqampXp669mVL+gh9cPIPIDH4PTo6WlxcPGmyurp6
/fr1pCkxNZhksz54+LmejlP7siX9pK+r0UlZcF5RLQQeT68WziOI4eduOk69y5b0F46i
kH8gi5E3NjbEYZyenr527Rp8xn7b1Rnko/JTU1OTk5MTExM9HkWpd9mS/sK1KIQQUlU4
Dk4IIVWFCk4IIVWFCk4IIVWFCk4IIVWFCk4IIVWFCk4IIVWFCk4IIVWFCk4IIVWFCk4I
IVWFCk4IIVWFCk4IIVWFCk4IIVWFCk4IIVWFCk4IIVWFCk4IIVWFCk4IIVWFCk4IIVWF
Ck4IIVWFCk4IIVWFCk4IIVWFCk4IIVWFCk4IIVWFCk4IIVWFCk4IIVWFCk4IIVWFCk4I
IVWFCk4IIVWFCk4IIVVlqNFo9NuGdjk4ODg+Pn7+/Dn+PHv2rAY5Kics54rCC1dnGiWg
HePLliPHmLGxMTSeYnFTc7S8vIw9+O2C7fls6+XZ9/f3ccbd3d34KFmFOTExkRoe+1sW
fmctLMDh4eG9e/dmZ2d9a7EH+9fX1xHGRun9hetXFR1MKq/gAlpOzypoSyDZaEtqD/7n
iisNIKsNdDubKEn0OoGjfSlnKc9cJdloqurw8LAa3LIrRQBkUKMgerctjAeGqWrjAk1P
Ty8bsGlziv8LCwtO9J5duM6eKFwhSf/1rtG85Khwju/QyK4KaFoiczGB+4XtaeAZFYib
eqirDg6aSssy7H05Q1j1pH4lCYOSj1dwQQohb79b2MKYxEW7ocvITiAXODWkPMtv6NmF
62AVjamQA04piibJuP0M1DnxKSID94XkU3I5dP3KSEwZ9r6c9aYkafb0ueJabY3pRzV8
ruvVjoVhZHBGFDmyB4IBCH/v3j1nf9kaSAxVtLnHlKJoshpM4PrB3aiEgqMhyR84UHkH
xLtqXuC8ZVNwOz6QRLvSio5oxbjV4rNnjZV3ycIsrHzHx5Km4btEZWsgMVTR5h5TiqLJ
ukLh61cJBW8YBYnXBSq4IpJq5+587zJMriFgGYXINerVvoVZyBhC3u6k0bxG8WOSZaaK
NveYUhdNrutXtottjdHhvMjBQSq4IrIIPdre3pbzwuHNm4j6yEgkEEy817xZ64iFPjoy
U2BgPTULZWsgMVTR5h5T6qKpjYLb0diwiPhxe0nZFFyGEdQJVSHOOzOsY1lwsVsGyzVk
0SkLHbTChA3ORdkaSAxVtLnHlLpo2lRwNEi9sUXTQsts6c6g5dhY0oSKtUbHGB3TTCJm
ycK5hj2B9VU4an1AuHJ6BxAoBPQrWQuik1ajVQXKORIZgNI+T4U478CCOtdJ0KUV/S2w
iLB9Cx10CU2bPYGl/Qtnq5ZdMuvXxkAVRUQc1TUzcmqYgYpqSz6mQiL87u6uLKa0O2GY
dqVIxClDGLCwsKABELelU4U0EcXag9ylLp/Lm832qaeCo/hs2VkCTUKaH4pYLoxcA71g
eaenfMvjU/PjIjzqmSwz8I/KLbytuA2zCq1lIWS1E20DqYEbRcs5EpFd2xvZW5m8z86o
nVmD1DJcnmvpcWctTLW2g48IFbtwWVVL3QK7M1BFBZ2T0FbW+FSsHVNTkQrp72986if5
UQIBslYQoTQCHUmSUc8js9kRaqjgUr1QQbWvQ9nZCud3uepQ+A1G22TexwpSLdf6HfbR
/Lip9TVwFHmHwbY3cgoh7/JNP0yBcs6FDAQ7gptrYYlFu8+sQWpJOVfH01kLLVYuO0Wx
C5da8XxRywppUfVM7UStH+2fPStTVpHF8dcl8zhk7UTTk0aRFSC1umrKKsTi2AWaUoFs
tkMNFTxJa4fWa/DHFkVYs5qc3hrnat5ZlmulCSwczoobXlZhazMkwL9ZCxdCI6eCFyjn
eLTjdG5WIsdDwpanlkzq6XpsoW9qsejhNAtcOFu1ZNWNlKE+Q6QhA1VUvf7UQpZTZNkc
k6/UW1ur0fgfCJDqVCXZjohmxymuAtlshxoqeNZtsi4VcBLUJpd1qbT65hrczLLcNpWs
LiGQ63CZBJqokFUIMYk7YfKWcy50iZ5/SFtI3mdn9AbITzZwul5aqLRfgIE0i104PeS0
AhmQiTFe92d1k4EoMfnKmuDRAKkNvHB1tb1aqj3x2WyHGip4VsHZMUq7X5dtBfyvAtc4
EL7lrGYgbtiScG1uZBdCTOJOmLzlnAsZRkjNhfXyck1O2GJ3IkqfmmvQuRsWKm1GL5Zm
ZN1oOTiWlYjuj+8pc1XI1KP2lig14zZApFXhUxfIZjvUUMHzhomZXihwjcPh7dphv2IF
4oYtabPGt99g4sMEkMIJ3PHoMHHeZ2dS735E2XMt4u6ehY6dXZrJLBAm/ppmhXQWZuAG
BcUYM6XfZmVrP4CCy5H6bkgbpkA224EK3mLiW5loktf4QAD1/f050kDccDbbrPFtRs8V
JkB49t+S99mZ1NV+MveYS2q7Z6HQ/jiMTw/qRjikvTWxyMq8vO/ViA/TZgBZYaxXRFYE
Ii9ZtywFstkOVPBuPTUQk2bWuoVA3LC1bdb4jjSYyDBZZK33yiLX9HLqSwSdzf5aKLRc
OVOANi9c/DUNhLTvyPXxZxrbtLn9AHqtZRFLZMS82WwHKnhXxhwbcQqeNasZiBvOZps1
viMNJjJMFtKrtXz9QOFnZ9SZklOIVuZaNtNtCxv5X6kYQw/qRmRIdJbIFBxSZ1F5kuHK
tFnZCgfQIfKsKxhOOT6b7UAFj31pRl4iLbcTKTroGYgbzmabNb4jDSYyTCpaGjFfY/DL
LQbn7SXiK8Vf+h5YKNg31nbkGdce1I28IRufPjfnx+pIZSscQG+Rs6pHfE7D2WwHKvj/
OWWdnTuOt9wOnMkwWSBuOJtt1viONJjIMKnk+tKNNrC8C8/VPG1UZbOw0Wzz6lsUeCTY
pwd1IxwyEDdrFXlHKlvhAC2fq8qyOSt8N76URAX/5DMuHZxnyHWd1OGSpSmBuOFstlnj
O9JgIsP4aMYjXU47Hp3LS7VPfid5Zgt7ZqEfHSLeZuXsQd0Ih0wiFuw64/4dqWyFA4Qj
Wt1wYuXNZjtQwf+BDlThT2pLk7fhxFveyKngDXMrEP6yVDibnWqlAbHoSKNKRbqxXO6q
llWBFwrGZLZfFmaZCgNinHF5m4ezs1N1o+XZs0Im2cMROjblzC50pEIWDqD7fbPDIz95
s9kOVPB/4LQTiLUOXMpryZL867riLRdS3xYUyEJqT9NOITSMc2o9PqfxtHmKLNS9zTUb
YRtSLifXDlCU00IFsZyFDehC7t2757+OQ14sJVnzNaLNCxd/TbPym2R3fjLc5F+LjlTI
wgHs98r1ossLqpCRrNWEBbLZDuVVcDuT07LLavnsrBAI43zX3CFXn9nye/NZOB2JH8Bm
01+/nLcQUv0aW2sF6zy2X86p2FeVRrqZBT98+AAAIABJREFUgq73SLLvn1JRaYhcBt57
Cx3Cb1u1pK57a/PC2ei6GjrLTg3plK3shLrZvkcX3okm+gm2WSFjMp4VwK4ysGi+UiMW
y2ZhyqjggdrZ8cBOAOeVvvb1fm0aHxm95csWUlPubCGkfre3s6eIyVpg/UbWQxMtz6Vo
44y5uH2xMMtsebrEUXN51yAO+b1yLjMCgVum0DIYbJN3eTsv2oYih9fqFKuQkWanhrQF
bt+s67xCvbPZLMZQOKuEEEJKy//rtwGEEEIKQgUnhJCqQgUnhJCqQgUnhJCqQgUnhJCq
QgUnhJCqQgUnhJCqQgUnhJCqQgUnhJCqQgUnhJCqQgUnhJCqQgUnhJCqQgUnhJCqQgUn
hJCqQgUnxRny2NjYKJbU4uKin1pnre0UKysrsA2//TaEkITvByftAi1bW1uT/8PDwycn
J3lTQJTR0VHdXF5eXl1d7Zh9Odnb20N38u7du6wA2rWw7ZC+Qx+ctItV29PT0wJu+M7O
TlaCPebs2bNXrlw5OjoKhJFPxtgPxxDSL+iDkw5gRzwKuOEjIyOQft3sY52kf02qBX1w
0jHkc4LQ4r29vfhY8NkRxf+gLSGkJfTBSQcQ13V9fX1paQl/JiYmDg4OIuOKA354eDg+
Pi576IMTEgl9cNIxFhcXxQ1/9epVpBuOYOKAnz17tsvWEVJDqOCkk+gkZORiOwnWx6lL
QioNFZx0klxuOAIgWC4H/OTkBHI/OTmpa8ZnZmbCq18io+zs7CCMboZXpiN6wGYcHRkZ
0U30Uggs6WD/3NxcYKmitQchNSL+sJ8jKTQIaRtbl+7duyebExMT4VgIgGCHh4c2kUCd
lJSXl5clyvHx8fr6ukQZGxvDZuEo4TYiGUHg7e3thYWFVDuRPo6iN5IOTI4iiuTRB2Zk
ZRPpIBFE3N/flz0ts0kGFio46QBW0SAxqlO7u7tZUXAIAaanp51EUhUcacpiFT9BPR3U
rc0oYRt8FQ4fhf4ifdt5QJqxJ1w4YrPf+SG11J4AWu8nQgYHKjjpAI6i6dMuATdcnFOr
YgH1FM8X6paalHr91rEtECVsgyAdT1YYq7PQVnWiFei4irjtvQRIvBzCHz/x1GeIAn0k
GQSo4KQDOIrW0g0XHXT0PUsZ4cMGdK1hdFMTLBAlbEN8GD2aNU6iMu2nAE0PpKyZ8m8d
yMBCBScdwNedsBueOr6RpWuaVGAI2IlbIErYhvgwelTH9x1s95Yr5UjzyEDBJ3pIB5DV
GrYu2ZdVweG1yzzevXs3Pj7uP/WT9TQN4r569crfH4hbIErYhhg7209B90P9U9e6SIBi
rw8jtYSrCUlXGBkZUUdY31wo5F0DLlqcpL3M1q72m2hSOEoZ0HUszqu+BF2dubi42Dub
SLmhD046gO+DJ5+64epUZjngSYRnGl9XCz8c318f3L6n9/j42C4qTz7eWMzOzqbqOxlM
6IOTbmHdcH1Es52HMIu9ebzAifoFiktXqqDDU6WWp40g3whA+Saf0Nthd1JPsuqSnbU7
bJJkLzHMqpM6tpC1sMSnQJSwDfFh2kwBJeasGkRepqen19fX+SwP8aEPTroI3HB9bexK
kyT/txGmpqbkzy+//NK9KCVBS0wXI+I2Qj4b5AyqEPIP+tuBkHoQqEu6ilkIPEOYVSf1
mfKkuawlxp4CUcI2xIdpMwVZqJ731oEMLFRw0gHCmmW/3hB4H0hA13R0GH9S11kfHx8v
LCy0GcXaEND9riq4rI0JxCXEwlEU0nV03hIOeLGVcI8fP5Y/R0dH4+PjSESX1h0cHGDT
fii5cBSgL65Cr6OrZbK+VhHzisG8yDrIubm5+E9kkIGm310IqTw6ro0/WbNt+nXg1KPO
9F1qMDjFOj/p06kojU/vGAT7chX7TPy9e/ecuPZoYCREw/ievn31VRbIFEzKeuaTDBRU
cFKceHGURSm+vodnNf0zrq+v68tDkuYIib78L4sCUaxVOtIStjNXLgJhZGwnkJqFIk74
RA8hJWJvb29ubm5nZ2dmZsb5RMbU1NTIyMjGxoZ8jDRp3hxwefiAQwUnpBScnJzgXiHm
qcvV1dWbN2/Kf7bfAYczmYSUgrW1NZnGvHbtWjgk34tCFPrghJSCkZGR09PTJM6t5ksK
iUAfnJBSIPIdgy40nJmZ6Zo5pBpQwQkpBbrwseUyc13qzq/XEyo4IaVAR7c3NzcDweCA
yxto19fXU78CQQYKjoMTUgpOTk4mJyePjo6SpjqnTldCvqenp09PT7MCkEGDPjghpWBk
ZAQCLe9FWVpampub0/XgEPednR3smZqagt+9u7tL+SYCfXBCygWE++HDh/v7++KPC1D2
mZmZ2dlZ+8VRQqjghBBSVTiKQgghVYUKTgghVYUKTgghVYUKTgghVYUKTgghVYUKTggh
VYUKTgghVYUKTgghVYUKTgghVYUKTgghVYUKTgghVYUKTgghVYUKTgghVYUKXhmGPiXy
UBYjIyPdMbMUZ3z37t3k5KRfFENpzMzM6JcnO25qR5KCefwkJkmFCl4ZGo3G4eEh/uzv
7zvvBNZD+OXrgk9OTtbW1qB6u7u7ziEtqMZHjo+PofWzs7P9sDSWqampZ8+e9dsKUkb4
fvCKAZ8x65IFDpUNiKbj9nYQuKs7OzsB59cvqPIXXfktJH2B1aJi1EPBu2pqy8SdAO/e
vYMP3r0epSNU6OKSXvKnfhtASD+Bt/78+XOOUZCKwnHwegK/cmZm5uTkZHFx0Z+vk6OJ
mdlbWVlJml9o9KdDZRpNds7NzSFNJxE9hexEGNk8e/Ys9NEJnDSHUPTUIyMj9qTybV8Y
E56VtSbZsyTNIRSbeFb52IyPjY1pphxTs/IoZSuTpfKFYi1q2cxKKuuKSOFrpiSkb3ZM
XDtCFW8qqSoNUikCl8wekos7PT29u7sre5aXl4eHh+3RRnMeDzs1DJDZP+zXTSQiE6Tg
3r17s7OzNhEEOG6ysLCAnVBDhJEA29vbapJT2ZxciBkyQyusr68jKTXDgmATExNiMwLg
dEgN54opIj8AUkPJ2BSsqal5lJ34LzZIdBQLbM4q50arK4K4SEHKGSYh7xLeljb+p8Zt
NItdrxEy4hgQYyqpKFTwihGp4LKprbrRFLtUDUUzFmHSTaCbUBxHRp1E/KN2T5Zq+7kQ
CdNNR9AttkdRmyFhgcQdUs9utSycRz8FW9RZ5dwIXhGc3Z7FWTCTakZ8Xx5pKqkivH4V
I5eCBwLof/F/VR0cKfFv2uD/Bk4hvjO6BHiCYen37VenGw6jVfNwNhtB0YxMIWBey8Dh
zXBS1kMPdLfhuI2m4svtEa5O+HanZbKkWnAcvHqkjpC+e/cO4lsgtZGRkbm5ORlK3tjY
WFxcdIaPnRoTHjlFdFgCp1gGW5FgvCVqxsrKitzvZ4FTOFmIP0s5gfLi3kLyJXMJ4RKw
oJAnJydPT0+vXbu2ubnZ4JKVgaIf3QYpDhxVGcR0cEYhGtE+eKPpwckYAnTEGaDIOl3M
KQJnTK14cjcAA6yb7+ObtL+/b/Peslb7AZyTtjQ1kM1A9EBxIe/6VFFqmQfiJnHDZTGb
pHLw+lUMmR6Eg6aNFvolw7iO+CbBkVPnKOQDafpjF3I6pJ86vuFoh+zRYXT8cWRRz5h8
nDl0LETiyIidlswqAQ0Dk2zHI/rlWOXgyJZkyhk7sqb6qSXecH8geup/3xLYEMh4alzZ
gz8ye4xN6cgDJw1vkspBBa8esj5E76Jk3Nlv3oKjoSIZ/h0YuoGkuejCPx1kxS6NsNLg
pyPj4IHAGkw2HWfTLl8JIMst9CxWYVveX/oP0DuLXmz01NScPVkBspJKvSLOuZzCCcfV
0tDOL9WAsKmkovBBL1IiVldXj46Oco2e14CTkxOZAJibm9MxfRTC0tISmycJQwUnJUKe
MTl79my/DekpyC9y7c/H8kl60hKuRSFlYWVl5WyTfhvSa3Db4cv33t6eHSsjJJX/7z/+
4z/6bQMZaEaawN/8z//8z2fPnv3Lv/xLvy3qNf/zP/+DjP/bv/2b6vjJycl3332HAvnX
f/3X/tpGSg7fbEX6zPLy8tLS0sTExObmZg1WdhdAluGPj4/L5vDw8MzMzOPHjwfwdoTk
hQNthBBSVTgOTgghVYUKTgghVYUKTgghVYUKTgghVYUKTgghVYUKTgghVYUKTgghVYUK
TgghVYUKTgghVYUKTgghVYUK3k+GssHRg4ODmZmZftn27t277p19b28v/NIPBJhpkvVZ
zvjCySphGCBf9SySgY7S7Qst6Wuu5V3k9ujk5CQOjYyMxB+yzM3Ndct00pK+fl9i0EH5
7+/v63/5c3h4mJgPrPTRtm6cHbnTr+SkBjg+Pp6enna+vNOmeVqklt3dXfmikF6CftHt
C52Yz/Ih18iyfs5Nvk0q32bCb2K+0xQ4ZJFD3TOehGHR95Pk0+9d+f/72za6cXaIwr17
95yv8SrYPzExkaoU/uePc5kX6DCgaOHeogd09UI7RYfilQ9bg3tN9BCUXb+DGjhkkf64
80aTOFj0ZSG1GdRPwcOJw/vO8oj98B1R8Ebzo52p2tRLelzUusfpL6U/a3lIEdeeCt5H
OA5OysLe3t5kkx6fd2pqCqfu8Ul7SePTN0i/e/dOvxPtzHaMjIwcHR21PCScnJwkzU/E
dclsEgMVvAIsLi7KNJSd2fNnGp09uqnRZefc3FzWpJZoqBzyPzcss4sSF8HEEuzUuUHR
wZWVFTsfG8/Dhw8vX76s1kIy1AaRdd3fsnBygcRPT0910877oaxEpwT8xx4UjhxdXV0N
R5FLgE2dD0RIbIrNsunkRT5XhF8Uoz0UPkXy6VUOs7m5icDy32bcIXBIgIXwwVuejnSX
ft8EkH+Sei2wEzf4ejOLBqMjmP7lc/bIJuIeN1lYWMBO3Ajr4Ob29raGl/nD9fV1PYSb
aCd9O16MAGqJTHnZ0Q+ZIcT+XPlFIrBBMou4SCQxs2d++EDhxJwu9ShSgw2aTZSVDrDI
HKxmU2fwAlHkEqDkxUjROxyVcnauJvbrBKPkHQFaWpV6lQMgETssnlqqLQ8BlIOaRxnp
Iyz6spCl4I4OOhodTiQ1ut2j4a18hE1KPeoMJTuC3jJ6lrVIFsoVHz5gcOAQRE1HeHG6
rDSthtpDgSj+ebGpidjpXD8vtn9teYpwZ6nIRLG9NIUV3F5uKngfYdGXhSwFD+yJUXAn
gHjH8NQgEKlSHogO6RHvT9xz30OXBOEPxkwMtjTe2RkTvpiCo0zUdfVvUtVjzUohEMWP
lbXZMu/xpwiAnsDpp/242pkFDslCzAIGkI7Doi8LvVFwAVosXrO2w5ZnR0h41rhxhgSI
E+dEwSFJzfHysvDPiPT9VX09UHA7OhROIXXRYfydSmDTT8Su/ch1iiyk23Z2OgsNxUmP
OeR3KtTxvsBCLwvtKzh0s6WCZwWw4+OC86SGo1/+gm4ZDXeGWQP4tqFH0aFVwQ7OdEnB
kb7NOMrBepeWrEOBKP554xUcVqng5jpFKpDv1G7V2Y+z6CUIHCpgAOkSLPpSIItq/TaW
BAeyxSluNNUTDV48I2dsxB+61XaIP6q2Muoqz9rIJhqwTU2ONj7OMcpzHI5t2AmTfEcv
Mr+yU20Qr98aICnbPeFRfueQ3cSpcSItQEXKAaf2R4Rk8tamL/OTgSi+SVmbSXMmUwpE
Sth5miZ8ivATSfZmy0HKXApWHtdU8wKHLNKXRw7Ek45DBe8/WbeiWYOeGkYcXtmDVipt
ybp1fpoyDm6j6CG0VT0k8mHjin5hUzXav3G2k28F8ttoCquTI2u57Bcxalk4Fv+uH7mw
C0ucXGQVEYRMk5KHS8NRnDxmXWKxUEs49Y0CLU8RKPkkA01ZzusPfwUOpaacZQDpHkON
7AtMSC5WV1ePjo78heSEkC5BBScdQx5R4UN6hPQMPpNJOsPKysrZJv02hJABggpO2kKe
fYfrvbe39+zZs36bQ8hg8ad+G0CqzfLy8tLS0sTExObmpvPGEkJIt+E4OCGEVBWOohBC
SFWhghNCSFWhghNCSFWhghNCSFWhghNCSFWhghNCSFXhasLu8u7du36b0GEKPHVZiULg
06R9J76e5LpYlah+edESoA9OCCFVhQreRerX+dNRJV2CDng8tgSo4IQQUlWo4N2ifp0/
HXDSJeiAx+OUABWcEEKqChW8K9Sv86cDTroEHfB4/BKgghPSLicnJ3t7eysrK3y/Lukx
fD9456lf5689P7K2ubkJtXr16pXsmZiYmJ2dXVxcLL94jY+PB44ODw9PTU1du3Ztbm4u
b15GR0fjA0th1q+SFIMOeDypJUAfnMSysbEBETw4OICIy3eyDw8PFxYW1tbWrIQhWDnV
HNb++uuv+t+C/aurq8fHx0tLS2gnyGOulFEUiNsFkwlpAZ/J7DD16/yl54fffeXKleXl
ZSidE+Dk5AQKrhVpaGgoaYqaBihVmYgnDtV29ks20f1AxPFnf39/cnIyV8p+xkkYOuDx
ZJUAfXASxf3795PmN9X8Q+X0uIuxuLi4vr6OP1NTU+iZ+m0OIS2ggneS+nX+2vPLV4yz
xLpOjidEfGJiImn64/22pc7QAY8nUAJUcJKD8ACxnQMc+ogV/Q8fPsCXv3DhwniTGzdu
YI8cGv8UcfmTpu9v99vTBVJrk4WFBfw+fvzY7kTeZ2ZmJFNoUTs7Oy3TgRePkBIl+bhk
xc76OotYsJn3FGTAoYJ3jPp1/rbnn56exu/s7CwUJys8FEdHHhof0T1v3ryBbwuR/f33
3w8PD+/cufP06dNLly6J7GLP1atX8efzzz9/9erVjz/+KLHwB5tnzpy5ePGiLoBpmVqb
QEbxa08HkZ2amkKBLC8vj42NHR0dXb9+PaywyPjk5CRC3rt3T+5RRkdHr1y5srm5eXp6
KmFkz9raGvagh0D6cq8DYk5RXeiAxxMuAc5kdoz61R5bdaAvkDDdhHpCfaBQ+APX28bK
msmEmwyNfvDgge7f2tq6ffv2/Pz83bt3ZY942ZDOzz77TINBlHEWZ+4xJrVUwjOZWbnA
JqJoGGQZHvrw8LAdK7dRRL6T5uiTTVlmfW3Kugd5XF1dlc4Dwg35xh/0FvWrVwkVPA/h
EqAP3hnqV3WcegM9goSJB5o0RRbaBOcRQoOQLSf9bt26lTSHmO3OL7/8Er9PnjzRPeKG
2z2yKfvzptZBIK+2QGRBjrrSDujtUFzQYtQKpxj9iQTdgy5B5Dtp9hC7u7tJ0xPvUA5K
BOU7npYlQAUnsaAyQbnQTo6Pj6Ev6+vrs7OzSVNlHDH1efHiBX7Pnz9vd4qj/ccff+ge
SceZQsTmN998UyC1wkiHJH2V4EwABNrV3t7e9PQ0urq8E6FOmqrmhATgM5kkN3AbRV8g
uLKA2pn083n//n2S9lTkmTNn/vznP+smRPncuXNv37598+aNCjSk+YsvviiQWmH29/cT
T0Mh6zs7O7j5wFE7RO5w5coVKHjLLo20hK/iiSkBKngHqN/tW3zjgVTJIzAx+KPPPvPz
87dv30bHIGPct27d0lnNAqkV45dffsHvtWvXZBPajWyil4I0X758GfunpqaynqTHrQkK
ZG5urq6TkG3SpcZSvzYYCUdRSAcYHh4OB4B3nDQXkLRM6ptvvkHgp0+ffmjy4sULxwHP
lVoBoNebm5sTExPqg6+srEC+t7e3ZeUf9gceYpJnghDemeAluaADHlkCVPB2qV/nn1p1
ZKGFj3iaLQcNRIWhyzEGyKj31tbWkydP4JK3mVpeJC92XAiCnjRnF3VPeOYWKdy7d48i
7kMHvONQwUks/kpwCBl80rGxMf9lKRAvkTlpXTpF6TvO+vCOooH9OUwnQExquZBlgvv7
+343JnlEpnDelq9MQbHMzs7K8hI+nZ8XOuDxJUAFb4v6df6BqgNVspvwviFkIyMjzjoN
ea8IxGt0dBSeu8w3nj9//s6dO/jz9ddfw7mW526gv99+++3nn3/unOizzz67evXqH3/8
ce7cObswXMmVWktkrEYeldxv4gi0PGR/8+ZNZAeZWltb0yzrH60JqtcoH4j4s2fPpBzk
JkaDaXeoe7LqUm06ADrg3YBP9LRF/WpPloIjp1AuqAkEThYpT09PX7t2LXX8RN/wNzw8
DCHTRSMQSuj7y5cvZdN5JMcCOYY6//rrr86SQUt8aspXX3319u1bf/+ZM2f+/d///S9/
+UvquAdyjf3ytKS+nTFrWClpKr4qOyKixBYWFvAn/IJywbZHe4oatNPIxpLXAR+cNpgK
Fbw4A1514qlEQfHOvavwKZ54cpUAR1EIIWWB/WjeEqCCF6R+nT8bD+kSHAHvHlRwQgip
KlTwItSv86cDTroER8DjKdAMqeCEEFJVqOC5qV/nTwecdAk64PEUa4ZUcEIIqSpU8HzU
r/OnA066BB3weAo3Qyo4IYRUFb4fPAf16/wr4YDLdzJ1M/VRe/9x+cXFRf/F4vK+Q4TU
T/mcazI/P4+i2Nvbu3LlihOFDy0Xgw54PO00Q/rgpOx89tln8jV62Ux9U8pvv/326tUr
ea3V1atXEd6Rbwj3jRs3kNSDBw9ev36NAOgJoPJQ80ePHt2+fTtpfpQHei1v5kqaX+qh
fJOSQx88lvp1/pVwwBX5fBr85awAnzV5//69fPLYAu3+4osvnPdenW8Cuf/666/tW8jl
XYDT09MtXyFLsqADHk+bzZA+OKkGf//735OgggMZSHEUXFzv1PeMJx89entUvkBP+SaV
gD54FPXr/KvlgCcfv26c9/Xf9+/ff/r0aeDDxIn3vU15c7cdeSe5oAMeT/vNkD44qQYv
XrxIMgbBbQDrpH/48GFjY+Pq1aupn4nIQuR+amqquK2E9AoqeGvq1/lXzgFPPo6Q+F89
VnwF39raSrxBlTB6ratYRGWADng8HaljVHBSGeQT9VnINzOtgsunkHMpuIyocAiFVAUq
eAvq1/lX0bt88uRJ8nE5ShYyUG7DpH5QLczz58/xG/M5NOJDBzyeTjVDKjipAC2HUJKP
Ch4O0xIRiyp2cmQwoYKHqF/nX1FtkhGSwEKUlgEikVGUy5cvt5nOAEIHPJ4ONkMqOKkA
/ghJagBHwWXcXMQ9Ei5EIdWCCp5J/Tr/ijrgyUeBDjzOI8tOnLWGMqIi85kx6BUfGRkp
ZufAQgc8ns42Qyo4qTw3btx4+fJl4km8PGm5sbHx4cOHmHQCC1EgJZR1UkKo4OnUr/Ov
rgOefBwekRUpFkjzrVu34GvLgIkzioL9V69eTZpvLgyIOFKQP7IQJXUIZWdnZ2Zmpq08
1Bc64PF0vBlSwUkFkBcN3r59+/79+7pzfX0d4js/P//ll1/K22L9JzYfPHgAEX///j08
a4TXMXEIurytcHx8XAZbDg4O4K0naUMoe3t7m5ub165d61r+CCnIEN+f6VO/zr+/DnhH
yhPiC/mW0RJw8eLFb775Rp7WefHixXfffachf/rpJ2dNIQJsbW29fftWxtOT5iTnuXPn
vmwiz9y3XAN+eHhY6fuYLkEHPJ5u1B8qeAr1qz01UPBuQ3UuBhU8nm7UMY6iuNSv6lCb
SJegfMfTpWZIBSeEkKpCBf+E+nX+dMBJl6ADHk/3miEVnBBCqgoVnBDSRXgX2NUSoIL/
H/W7fWPjIV2iS42lfm2w21DBCSHdgj5Et0uACv5P6tf5s/GQLkEHvDxQwQkhXYE+RA9K
gAr+D+rX+bPxkC5BB7xUUMEJIZ2HPkRvSoAKXsPOn42HdAk64GWDCk4I6TD0IXpWAoOu
4PXr/Nl4SJegA15CBl3BCSGdhT5EL0tgoBW8fp0/Gw/pEnTAy8lAKzghpLPQh+hxCQyu
gtev82fjIV2CDnhpGVwFJ4R0FvoQvS+BAVXw+nX+bDykS9ABLzMDquCEkM5CH6IvJTCI
Cl6/zp+Nh3QJOuAlZxAVnBDSWehD9KsEBk7B69f5s/GQLkEHvPwMnIITQjoLfYg+lsBg
KXj9On82HtIl6IBXgsFScEJIZ6EP0d8SGCAFr1/nz8ZDugQd8KowQApOCOks9CH6XgKD
ouD16/z7XnVIXaEDXiEGRcEJIZ2FPkQZSmAgFLx+nX8Zqg6pJXTAq8VAKDghpLPQhyhJ
CdRfwevX+Zek6pD6QQe8ctRfwQkhpK7UXMHr1/nTAa8Qi4uLQ00i9/eX+MaSqxLWrw0m
ZWqGf+q3AaS8+BKzu7s7MzPTF2PApUuX8Pv777+3n9SHDx+2traePn3697///Y8//pCd
ExMTU1NT165di8+jtORUkZqbm3v8+HHL/YEUCGlJnX3w+rWKHvf8jUZjf39f/uMPNvso
3x0E2g2xhnzPz8+/fv36sMnx8fHy8jLqzJUrV9r3jldWVpJmASLZ9fX1lvv7Dh3weMrj
gIMhVKZ+29At6ld7+lJ1RM7aqSeluhA3btyAdv/www9LS0t2v5btxsYGDrWT3729PXQD
0OiRkZGY/WWACh4PFbwX1K/q9Kve1EnB4fb+9a9/9eU7+bR4keV28oukjo6O/BSy9vcd
ync8pZLvpN6jKIQ4QL7PnDnjy3dngUzn2k9IYeqp4PXr/MvW82dxcnKysrIyMjIiay3m
5uawRw6Nf8pXX32lsbBpE8EhGzJpTjy+ePHi1q1bFy5csCGfPHly6dIlCfbtt99iM2Db
/fv3k+Y6kJa5UDcZxu/t7UmOZHNmZgb5wqYcQmqFh0T8FLJOB1ABdnZ2ip0oDB3weErY
DLkWhXSMg4ODqamphYUFtF5okAwoQ5L+67/+67PPPjs8PISGYidCvnr1Cnsk1tbWVtIc
31DX+Lfffkuasn716tUHDx4kzVUi/umg199//z3CIDxSg5Rj88svv8wyD30Afr/44ov4
HI2Ojup/6Onk5KT40aenp/aQAvFVndXp0OHhYci0vz98OhTm9PQ0TiSbOO/169eT5lKW
ePtJ7amnD056D1Qb8j07Owu7D9SNAAAgAElEQVSNFhcSsgVdhgaJ85tk+L/iOIu8Oty9
e1f+QP0h+s5RuOQSRjqDv/3tb2EL3759i9/z58/HZ0oWjch/6Cmyhj27u7vOIWV1dVV9
z8ZHIP2p+/0U7B50hBB9Cba9vS07ZSlLXyih+9ljylkCNVTw+t2+lbPqOKytreF3eXnZ
7hSHUQc3ILVwme2e5KOwvnz58sOHD7oT0g+5Vz9d4jpn1HXcQi5pjkeHOJA1WUyJX/Qo
9lD7ift7Hj9+rGs3UYzSbXR8JJ2P0VedGio46Qt7e3v4nZyctDtFj6zUyiiHetyQcuzx
Zf3Ro0ctB6w///zzpLk6UFMTYQ1j+4lc2OGLHvSpzin6uxK/Ej5EVyltCdRNwevX+Ze2
6jiIezjkMTw8fO7cOQ0mCv706VPZhGrPz8/LTlXwN2/eIIrvdDv8+OOPSdN5/+6772Qm
U4bUsxDFF5ffB32PY3lcvisMHfAaUDcFJ/2l4XFyciIzk8rFixeTpkzj9/379+fPn4eC
nzlzRgdSNjY2ZAIzDGK9evXqzp074sIj+u3bt2VwPBXpSLJU/uDgQMe4k+b7AyKzXHuq
4kN0jzKXQK0UvH6df5mrjgN87aSpgy1Disf96NEjiLiuDPnmm2+Sphv+oUnkSeGnIyLk
HlIuHQOSzQoswzLq/qeigxX1eH9AADrg9aBWCk56DJqrjjaI5KW+y8lBh8KBjIQkH4dE
njQRNW+JXUUOKW/ptsPZn5+fT5rrzWPSJ0mlfIguUfISqI+C16/zL3nVSZqvu9L/sgpl
bW3Nd8N1NaEAtf3888/fv3/vrCA8d+7cy5cv4UQH1nQHkHFz8cSzQD+BU799+/bbb78t
PKVZA+iA14b6KDjpBvpEZSrPnz/X/5OTk/KyvampqY2NDYkINYdvLlOIFvGFnfV/stNO
e6Zidd960/Lu2Z9//jkQFyr/22+/4UToKiYmJtC12NRgrTxwZFFVksU2LQ9pB+Y8Qpm6
309B92SpYfiKdJby+xDdpvwlUJM3W9Wv8y9J1ZGXMYXD2CoEJYIsPnv2TDZnZ2dXV1dT
Y42Pj//666+OiGNn6opA57H7pLlwUIZcIMGyWlEf4Izk1q1bb5voHmg6ToTfubk5KX9/
RYpmNvWQvxOpQbtT9/vPKPnYsrWJ9OZFY3yMviTNMAAVvKSUv+rEU4mrU6cCDxN5OfIW
SCWuci4qUSXqMIrCqkNIJBwBrxl1UHBCSGehD1GVEqi8gtev869K1SGVgw54/ai8ghNC
Ogt9iAqVQLUVvH6df4WqDqkWdMBrSbUVnBDSWehDVKsEKqzg9ev8q1V1SIWgA15XKqzg
hJDOQh+iciVQVQWvX+dfuaqTxeLiYm3yEkY+TKwPcAZ29hc64DWGXzom6UxOTjqPfY+N
jdlGqwGcx3o3Nze7Z9WLFy+2trbev3/vvHO8AEjnyZMnb9++1U8ITUxMyJeanS8NZaEf
JrYfYk7dWQnK0+X0iyqWQCUVvH6df1erTkxx+QbIm5hmZmaePXsGMcKv/agjPE3I9717
9/xv70Lou/dy7fX19ZcvX965c6edROSFKl9++eWDBw/kjYZv3rz57//+77W1NWRqf38/
5i3nSbPrwg0Heiyb39SdfYQOeBko1gZjqKSCk54htQpi5Mi3vIkw9VOW3WvbHz58gHyf
O3cu8gXiqdy4ceOLL75w3oF1/vz5r776anZ2VnzwvGmmutvV8sGr6H52loqWQPUUvH6d
f5mrjrwB/PLly7oH8j09Pf348ePIoYYOIq9+bWf8BPItn/VJPSo5yuU7S/lA91vu7At0
wGtP9RSc9BIZ6daXu4p8b25u9l6+37x5AwVvZ/zk/v37T58+Db/TNe+rOiU1pw9O3Vlm
KmRql6huCVRsLUr9Ov8yVx0tbTGypXxDYRFSX2ON6HNzc/at1lDhS5cujTdx4n748AEK
e+HCBTn67bffyqeQldu3b8/Pz/vu89bWlsaCi52VF6QP865evSoD35EgyysrKyMjI/L1
emfUSMrHGS1J3Sns7e3BwZek7KcknLMgTOpAfFb0LOiADwIVU3DSS+RjCyJGUBmZoEuV
b4gLBGhpaeno6Eg+eQyJgaTaz2Y+efLk66+/fv/+vR8dYo2znDlz5vXr1zipfG4NgZGC
fnv+t99+u3v3ro0FUYbQI9nff/8dsX744YfAV4zlE/W5vt+2s7ODDgmGIe9If2xsDNm3
M7fxQyhIAeL78OFDpCkBUFZyCGI9OjqKQpOzyKQxotsOIxC9fcrsQ/SGSpdAlRS8fp1/
yauOfEQNaiLyDVHO8r7hPkNcROtlHBlxt7e38Qdue9IUUACFElWyn1KDEEOs4R2rKulI
N8I7qu2cFEL/888/i1sdFjUR93gFR590/fp1ZAq3EUnzSklvZJ1fKR/H3fZ3ysQvejik
hl9bhjiE4p2dnZWOQc+SNMdz5FyB6AHogA8IHAcnmci9PBrt2SZ2OYqDfOZRZEimPSE3
shOKA+1+8eKFfMFSvi/8xRdfaFz5DnKB5SWPHj1y9qR+oU2wX1OLAcLtLIsU6Tw9PdU9
4g47M5/+TnRauDXRgRHRZVnxIiX2l7/8RQP7nXogevuU3IfoAVUvgcr44PXr/MtfdUQQ
RV9evXqVunbQIjN4Kl7ijQ4PD0O+dfWeKKlV8CdPnjh7BP/7yKkExr4LA5WEUrdUyZhp
TNRbuNW4EZH+D70a7hWWl5dFiOWrx/7qF3QeMdGzoAM+ONAHJ5nIN47hjY6Pj+Nmf3Nz
E/61jCr4iMcNvVbxErcROi5etuAruD4Sqcj341t2GDKw8/TpU5kXvXjx4o8//uh8OrkY
v/zyS/LR6VbkI/GqrZJfZwjF3ykajTKBqSgKCDH6RS0i69HbFKDRMdHbpPw+RLepQQlU
wwevX+df/qqjipw0tUwGta9fv571vKI+w6l75Iv1165d0+UfIs12EFyxK0+2trbggLcc
V4Fe//rrr9BxaDc2X758+d1332UFPnPmjHOWADHDI3KH4YTxd8qepDmdADmW5TrO6WyR
Pnz4EJ2E9l4x0R3ogA8U1VBw0nukxapewPUWx3B2dla8UQeZgtNnf6QDSD51pUXBnQGT
q1ev4vf777+XzfX1dfjpkY/twOOGjv/888+Q8iTNnVfkpIHFKhbfNU4+iqkOrYjsOj64
v1O6saxJYBSm/Eppr66uOs/0h6O3Q/l9iG5TjxKogILXr/OvRNWRIRTrTkJfoE3Ynzq+
kToILgqlpCr43bt3IeLv378fHx+/cOEC9vz+++8tV207K8pl8CQwdC4ePaRQplILIItt
VElFW51Vg6k7A8AeFBGKFNmRkW7U9sCMcUvogA8aFVBw0hfEidZhX0EUCu421NwPDKA+
IuKyxz6On5gFIVtbW1999ZX8h1g/ePAAHcC5c+dev35dbKWz9A3wx7MCoNsQZx/nzRJx
6JR0TjJ2ZH1hyDd0Vpf6qaIhv+ogp+50wmtqGhL/j4+P0TfgdP5rwsLRC1MJH6Kr1KYE
yq7g9ev8K1F1oCbiUzv+IDZ3d3fx5+bNm1bEdbh2dHRU164kn3qjIrLgu+++u3//vqO2
2Al91zAx6MM+iHXjxo07d+6El3ujnxBnH3K5vr6uY+IQ9CdPnsiErXQ5ouM6uIHeCNq6
v7+v106XLSK/OCRFkbpTlsNj86SJLjC3IAyKK3UpZEx0hQ74AFJ2BSe9Z2hoSJX3+vXr
zjPccLFlQBwirk/My8gv9sOdFImBG2vHHJKPc4kXL16E1MLXdsZSxC+GjkdONs7Pz0N2
5WF6ePRIMGZFOUT8p59+go4/evRInvkEly5dQgrQbjUe4ou8yOAGVBv9E7o0mxd5Cbj0
BPLAZNZOaC56AjjvOIrEU1VY5hWuXLnizxLHRM9LJXyIrlKnEhjK+yqfXlK/zr8vVad7
7ybuiAEQYvQQ586dgystz9xD4tt5f2wx+nJpIMdra2voL+Hmy8RD1jt7WxLfWHLltH5t
MOnHteb7wUk9uXHjhqw8+eyzz+CG37p16+nTp7dv38ZmrneYVBG40rLyZGRkRN5bAF97
aWkJm2162QHq5H4Wo2YlwFEU0jdEr+/evSsrT2RKU+YbdYy7rohe4+ZDZhpkSlOW7hTz
wclgUt5RlPrdvvWr8y/tKIqsCHRm8OCJy6h64CUn3aDHV0emEJzWB09cBtPztsrIxpI3
j2yDnaJ7bZA+OOkzztSl+OPiidceZ+pSpjSdRfSEBCipgrPzHwTm5+eT5tOYuojwyZMn
ly5d+vzzzwMvla0H8mwnxFqX0u/s7ExPT4+NjcV8vcFCBzySWrZBzmSSviEj4FBtfZ/J
xYsXFxcXe78QpffICDhU+8qVK7IH8r28vMxBcJKLMo6Ds/PvLKUdBy8VFXXQ6IBHUtc2
WNJRFEIIIS0pnYKz8yckEjrgkdS4DZZOwQkhhERSLgVn509IJHTAI6l3GyyXghNCCImn
RArOzp+QSPgiWSKUSMEJIZ2FPkTtS6AsCl6/zr/2VYf0CzrgRCmLghNCOgt9iEEogVIo
eP06/0GoOqQv0AEnllIoOCGks9CHGJAS6L+C16/zH5CqQ3oPHXDi0H8FJ4R0FvoQg1MC
fVbw+nX+g1N1SI+hA0586IMTUivoQwxUCfRTwevX+Q9U1SG9hA44SYU+OCH1gT7EoJVA
3xS8fp3/oFUd0jPogJMs6IMTUhPoQwxgCfRHwevX+Q9g1SG9gQ44CUAfnJA6QB9iMEug
Dwpev85/MKsO6QF0wEkY+uCEVB76EANbAr1W8Pp1/gNbdUi3oQNOWkIfnJBqQx9ikEug
pwpev85/kKsO6Sp0wEkM9MEJqTD0IQa8BHqn4PXr/Ae86pDuQQecREIfnKRzcnKyt7e3
srIyMjLSb1sGBS3zCxcuxISnD8ES+FNvTlO/zr8SVWdoaMjZc3h4GBl3dHS00+ZUBr/c
Umk0Gp09b1fLvH5tkCT0wesNJGZ/f1/+//rrr/HyLXGPj4+7Y1cF2N7ebqSh5bm+vt7x
k+Yq80r4EF2FJZD0RsHr1/lXqOpMTk7Kn/Pnz+eNO8jjJ1NTU/7Ok5OT2dlZ/Ll3797i
4mI3zotTdCPZ+rVBItAHJySF1E56bm7u6Ohoenp6ZWWl9yZZKuRDdAmWgEAFJ8QldYB7
dXX12bNnY2NjOzs7vTeJkFS6ruD1u32rU+d/48aNCxcujI+PDw0NzczM7O3tZYXE3T0C
DDVBCaSq2MHBQVaYDx8+vHjx4v79+7LKApvffvvteJNLly49efKkQEgbRcJLMGQKe2wA
xEJcOYrUUhMJg5K5efMm/jx+/Dh1cCmQd2dVT6AksxoLsqP2J6YGIilJVlLDLYIOwtiT
IlktxshVLiWnTm2wTeiDDyhv3rxBY/7iiy9ev359eHi4u7uL3ytXrmxsbPiBIQGTk5Pw
QGXz6Ojo+vXrjohDLKamptC0lpeX4ag6YSYmJr777jsk/scff+DU0KOXL1/Koffv33//
/feqqvEhNSOIAoX6/fffkYU7d+48ffoUsVTEER6xzp079+rVKwSQRHKVFbKPkkma05s6
rxCf99HRUURfW1s7PT2F0CNYuCQdkJGvvvoKZv/www92LhpJIWUoNczDTcP6+jp6FyQu
Im5PKilIMaJUc+WdlJyhjq+IstABLwOyNs42fjRpqN7i4uKPP/4oe6Tly2o2qDmcRBsX
gUUdkqY3KnIGqbLXFyFxCi0f+IOIMjw8LBKjJ8UfiCnOi84j+Siv+PP5559Dgq15MSEB
/MqrV68+ePBA92xtbd2+fXt+fv7u3bvYREcF2YJ8f/bZZ0lT8b/++mt/WU7WlYX9UG1I
LdR5dXU1q4Sz8q6JSNkiX0hEihfCDfnWktTCFEdbLBTxxR/NspwFgRFsdnbWqj+6vaWl
pYWFBemG9aRajLi5Qe+Ya0lSCaliG4xRwmL5og8+iNy/fx+/ED67E7fbaPz48/DhQye8
yjeA+sAVTZr+ow0DbbJVUMQODqDuEQEFv/32m4gy+PLLL3/66aek6V8XCHnr1i38OstC
EDJpKr5sOl5n3jU5SFxmL7PkO4nIuw68oCS1d4TQo7NMvJJU0NlAvlECtscS4FzjF52K
3YkEk2bH4JwUWZBixG/V5Zs4dFHB6YCXFvhiSZqWXbt2LWmqjLPfybgohQNu6gNRAqhG
FwiZmhHpAFS44bMnzRF/CZzkeawJWizedHigIz7vziFVc7+xiL8M8ZU7CSe6zFg4Qzoi
2bbnEKRLqwe1aYOdokfPZJJSYd1YiwpKMXDbDqV79erV/v4+fttJKhLJiAw7WM6cOfPn
P/9Z/v/444/ff//9yybYvHjxIhTtm2++aZm4zl4+e/as5dL4jucd8g1Ts+wUt91/dhSd
DTVuoOiWD04HvPw4CzbaAfoFx3x0dPSXX34ZGxuD69rL5zkPPV6/fv3bb7/JUeg1JPXO
nTsyagQdv337tgy/BNDZy/X19dTZS6VLeYfBMBW3DrrHr4H+I6MwRm8I2AYHAY6DDyJw
UZOPQxAdYWVl5fHjx9vb27KCDb58b57nlIy8efMmHOyzzz6DM/vgwQNIORxb7Hn06FEg
PHRwenoafxYWFlo+e9mlvMNgWVdjRVyBr514ozdkAOmKgrPzLzm6uiP1qDw4novNzc3k
0/HxLj0d7iAZgcwFwtgxFki5XbWShcxeTkxMpK6tTJq50xGM7uUdIv7DDz+IiKcOoPsz
Fgrb4IBAH3wQEb8S0uB4ryJYWbLVElmDAf1CCuGRh04hGcHpfDdc1tv4yDyneOKpiE8N
J1dXbfvo+62ULuV9aWnp6tWruFKQbNsxyCqUtbU13w3v+xP/pJd0XsHZ+Zef8+fPi/Z9
/fXX4omL9KDxQ5t0EEAlI+ua6n5Zvn3z5k14pqOjo1ZZ4u/048flNSQycufOHcnI1taW
7Ieaf/vtt7IERZAl1cKlS5fw+/PPP6emjEKQhXrh2Uu74DIm71pQTknqpp933YObBtwV
wR4kLs9eJs1VKPJyxKmpKdgsV0qeC3XW6ScdHS7rF/Vrg52i80/0UMHLBtr8uXPndGZP
gXbDUZXlHHA50fjhSGpm/XUOtqrYozKBNjc3J06rPvkSfsu2XdLnLyaJCan7oVCQM310
03nA50kThJH1hc5RRTIe+WZwQQqkQN61JOXBnKxgetVgG06BznVhYQF/7JpCXEG9V4DQ
yxVMTbbSK8Gr3ga790RPhxWc8l1CoCb28ctUuprNStSK3l/oyGLJa1glSjsXNWiDfCaT
5EYe+hCXsEsvsyaE9JdOPtHDzr9UyHJm8Le//U2fUyclgQ54JJVugz2Az2TWmYmJic3N
zUH+1A4h9aZjCs7Ov2zY6bL+WkIc6IBHUvU22AM4Dk4IIVWlMwrOzp+QSOiAR8I2GAN9
cEIIqSodUHB2/oREQgc8ErbBSOiDkzIi3zu+ceOGPATfe+RLwfYByKydhPSRdteisPOv
OvLdyNRDY2Njy8vLfXkaSF42kjSfLA8ESzX+p59+0q/5oA9w3lzY8vFUQb4waS3J2hkP
HfBIBq0NtgN98EHn/Pnz8q162dRvBWxvb8PlXFpaCnwfsnvApPn5+aTVN9jE+F9//VVj
ARvlwYMH2CNvubp48SL+x8h30iwH+Wqo/W5R6k5C+khbCs7OvzaIJMHp1j1zc3PycUh5
V1+/CPvggryyyr6M0EEeSS32uchUd7uAD04HPJKBbYPFoA9O/oG8RMV5oZ3Iuv/l3N7w
9u3bJE52//73vydBrW8ZIBV5CfjU1FTLnYT0i+IKzs6/TsjVdD5N0Jvv7GQhCh6DvCA3
S6A/fPggTrrzSfuWyAeLnVqRurMldMAjGeQ2WAz64OQfiDA5gwMyiuJ/dA3KvrKyMjIy
Ih8csFOd0JS5uTnslLjKmzdvvvrqK7uwBMJ6//79CxcujDf59ttv7XcYhEivWb5gkCXQ
0hP4STkGOBO2Io5OgaTuTLIL5ODgQPbIKeSbDEnz68k4r5gNM1AsOLq1tRVIE/dD2r9q
ITvfyfMLmdSeggrOzr9myOCAHUURBUk+vp9WgTSjrKBiCHB4eDg2Nra5uYmQ8qEDpCAf
b5QuQXn06BGUVOcYoTXfffcdNl+/fo2Q8/PzL1++tAPZok2RCh4eJJEPsDlHkT6UDjth
gEx1Si6cAokZQskqkMSbQvjmm2/kz9OnT3FbICbduHFD7iFu376tISH909PTly9fRprH
x8cLCwvPnj1D2TqF7NymOIVMBgH64OQfiOCqlyeqdHp6Cm/R9m17e3vXr1/HUfmwLw6J
lGxsbIjTDQlL/VCy+JuyvAReJ+Qb+iVao2++tUPeEj5GwXWQJOsNuiJztntA4t9///2D
Bw/0jH/729+STz8Q+vz588Rzt/2dgQKRo7u7u7Ja5ocfflALYRLskU2Y8dNPP9mzQKYh
3+gnZB5CXy157dq1+EKuIgPuRRWjyHpwOuA1Qz7JKMKknwfTT3bZkNAp+Jh2LZ2IPrR+
sUnysTAd7YObeebMGRno2NragubevXtXj4r0WOdRZFed1gDqh4Y/1WbHWOD2QkDt6eSo
nbMVd9tZNejvDBRI0tRiNBYULzoM5yt32qNAxx2vGeqP6PItY0HmmXEWqLkUsqxMd3o4
W8hkQOD7wck/RVAUEE730tIS5NsZyE7SlCWAfSm5jP+qw4t0nJV/kB6IkXWi46cxZZAk
6+uXycd8qUpK/9HyMaWYaczIArl//7563MnHASJfZ+F3y5+1tTX0CnoW9AFHR0foEf33
vNsScwq5cgy4F1WY3KModMDrh7jA4jVD2iAljx8/9hX8l19+STLWq9iF5P4KFhlSEA2F
4EJArdcJgUuaEuzYEzkILlofHvz1R9gdAZW7EM2F+LzObYS/s2WBSGN59OiRP0BkDZZO
6Nq1a0lzBBy9gnXqNzc3k0/nk8Wvd/JoC5kMDhwHJ/+cCbSD4MPDw9evX3e0OHJgwZkU
hbLIOLWomKNfUCJfenyNCxBeSihJWQVPVXzZqbmQ8W4np/7OmAK5deuWY56YZPnf//1f
FLjcFkg/cfnyZTmESyDToc5ZnFzIjUVSWR+cXlRh8ik4HfBaInKgSyxwty4OuMzOKamP
9oiuybPmFilYFSCVMNEvFZobN27IIesUp64eCRufNfjrLzQUpUsNprmAI5x4Pri/M1wg
0lh8A6TLsV0IfHkdipHoei1wCeSMdimhc0btBfM+skRqAH1w8g9NgQ9oh1nh8ckKtpYv
RYHWQ2LsSIKVGPiV4jzqIIkd4IZ8//jjj9jjSM/Lly+TOHdStD7wPL0EaOnOP3nyxOYC
GU+8VYOpO32cAhG9tidywqPYDw8PdSGjuPDS/0G+Uf6vXr3yV6DLbZMAN18yaEeiKgS9
qHbIoeB0wGuJOIl+UcCtg6zfvHlTfE+AzeSjKypArY6OjmT9nKLLMCBAcC2l2qiGqgsM
+dadouDOEz1wLbe2tvzHfCyij1nrCJOPHcaZM2d0j/wXZRegqkhHc6H1HNqKQhAtTt0Z
KBCnsciwNU6q3ZIOZEO7pW8QpPTkmR0dS0G3gT04qSYrxYhEUIzoJkXQOQg+gNAHH3Tk
UcCTJs4hfSZTDslALTZFR/b29qA+8BlTO8LR0VEIEEQH8uQvcRsfH4fcfPPNN6JEjx49
unDhgqSvw8RwPO/fvx9+laAYn+WDy6xp8ukghqxQ/P7772UTp8NZfv31V80FPGLNAjIo
dyGpO2MK5OLFi2KnSrZ0ITJ/iyi41/ELEOWD0kP6x8fHSXMyEyXpL3pBEaEYkTvctVR0
HSG9qDahgg8uEBEohbw+G54jtMlZVjEzMwN5kkNJ8+FMiAg2EQsN7/nz53A/nShJcwgY
zunu7i4ESPoAOx5yrgkUU5RU5Awhf//9dwkmexDmzp07r1+/zvIrxXgZb0EW8F80UYBb
jT366nB5qF36BnQJOB2cbuy5dOkSdv72229W+ySzEMf19XV0XTIKlLozpkBwOuTor3/9
K0ySszx48AB70GnBfYaj7YSfaIJuwK77llsZOy0xPz+PRH766ScUo4zMVHQOk7TJUKPR
iAnHIZTqEnPtulQakCH4j+rAlpkOlkCP32N169Yt9AeVKGQHtkFLsdKgD066CHzw1Oe/
SQeBD17ROUzSPlEKTgecFGBvb+/09LQvn/jpIz12wF+8ePHHH39kPY9aZtgGOwJ9cNIt
Hj58uLy8zIbaVba2tvryIVNSElorOB1wEsnc3Jw8Upg019jt7+/TAU+lHQf8xo0bulzn
zZs3b9++jfzyZ6lgG+wUfLMV6QzQbllSPTMzg/9wwO1CadIRoN2yduiLL77AfzjgzisP
yaDRwgenA04ikcc4IeIjIyPPnz/f2Njw36VXb3rggEO45+fnIeLyiZ+7d+8GnmYqLWyD
HaTFakIqeA3o42rCeAP6TvslwI9hRsI2mErnVxOy6hASCeU7ErbBzsK1KIQQUlUyFZyd
PyGR0AGPhG2w49AHJ4SQqpKu4Oz8CYmEDngkbIPdgD44IYRUlRQFZ+dPSCR0wCNhG+wS
9MEJIaSquArOzp+QSOiAR8I22D3ogxNCSFX55Kl6dv6EREIHPBK2wa4S+5U1QgghZYOj
KIQQUlWo4IQQUlWo4IQQUlWo4IQQUlWo4IQQUlWo4IQQUlWo4IQQUlWo4IQQUlWo4IQQ
UlWo4IQQUlWo4IQQUlWo4IQQUlWo4IQQUlWo4IQQUlWo4IQQUlWo4IQQUlWo4IQQUlWo
4IQQUlWo4IQQUlWo4IQQUlWo4IQQUlWo4IQQUlX+31AaZ8+e3dnZ6dQ5RkZGOpVUac/7
7t27ubk5Kb2VlRXsOTg4mJmZSS3P1DLPShnpTE5OIgCy41yUwCGfk5MTWGjjqsEApu7t
7RXMvAdKAwl2KrUO4l8mAXnHNfLDx5dwgcuEIsJFaTtPZLBpNBqHh4fyRzg+Pl5fXx8e
Ht7e3m50AiTVkapAWfQAAAXjSURBVHRKe14U1MLCAooRRYc/Upj4XV5exk78393dHRsb
0/K0pR0GCSIXiC6JIKL8Dx9KZWJiQgM49uzv78PUeKtaolWrVKReJmzOzs6mGhxfwsUu
E1oZTt2dvJJB4Z+11q++aNW9VF7oS99TKIbogt0jhenYg3ar5Rmvbvea2HNpmw8c8llu
opuQb+lafLN9y4vRKQXv1GXNuky4KChG6KxvcHwJF75M09PTnfKTyGCSqeBZO7tlR9vn
6pfTZ31bi2+P7ok31UkcQgPxbXnIwT8UNqAjJdmpy9HBniB8j+KfKL6EC18m9KP9ukMl
9SBTU3CLBwehd3ZUVsFxXtyvtAxm22q8qX7z1riBQw7wAa0D3mjKirMnJp1clE3BW14m
/0TxJdzOZYJLjrYWMIyQACkKDq1B80bNc2600QCg6TJiiGoHb0IPwcvQQ/hjDyER7Qns
mKMdh4Wg6Li81HiNJeOVap49EWJpmwyk4BtvT60hdWxUsqApjzUJlWCcxNhxDBkih51i
rb3Lbpl4wJHPssR3P5E77MSpRTsOm2jgcEmm7mk0L43ERXEhWceYrMoTLvxUY1KrUPuX
KaY8sxJp5zIhC710lUjN+KSeaWtBI3HkW6RTd0J0dDhPJmTkENoeGpImomlKSBxStULF
tVXZqdYSCyc9bqIjmHYAFylYByc1BfkvgiUqhtRgAw7ZeUURDpU5kVc9Y/sKDpvteC6i
iHTKpLEIemTiBRQ8az+sQiHg1KKeWROttiRT9yAXKD11JJGOKK8GCFSecOH7xmRVoeoq
OAdSSDt8Us+gdPjjz3E1mlMu1rNumIqI+uc43X6D1z82ZEDB/cDp1rdKQY13MgWZsA3e
yXXqvFbq2X38YEjN3i74OF1Rahb8Pe0ruCU80RreAzn2p+NsgEDlabQqfL8uZVWhLCIv
U78UPJAsIS1x65m4q750+m1AncqW8qebcNOgm/D40OADTTprT6PZPYgHp/fXMSn4h8Iy
kXX2VFqGjFlvEC8N2vEEDuW10AmWV3RaCmKg8uRNPFCFwrQshJhcx5dwrstEBSeFSWm0
qSIeqGQIrIMbMqzpjAk4cRFGBl7sBE5M+5FV6kgcrVdc2ngFDyyeizx7FuHlbqI1LRPJ
Op2TuLjzLQ/5iceIXVcVPOa88XFTq1CYlqsS/RPFl3Cbl4kKTgqT3mh9EZfpqdQkEMxO
LvnBsqQhr4aGnf1ACr5VyKBdlltYwZGOPw+pHRjk2x888dcUwzZnqbLipICQWYnbQw52
lFnwc4dc6Hxay9KQ0TbdtGPTgjy6YgMEpDaXgoc3swhfpqyk4ku4ncskM8AxuSDE5x+1
Vkau/ZUn0vBEx2XWSDdR7awSpY6E/t85PvqAiZmywx/nVlpS0G7DNwl7pB3KBKB0Gza8
n4I1Xi2UNmMT971Uq/6BKTK0TyeiqluWh4iM63ILyYiVb+d0cmnEcnmQ0q7iyDrkgELz
H2axNsgDmSo0fknKrU/j4zywDGHpUSleeS6m8fHZGT9AVuUJFL5vTFYVKnyZbGE63W2g
hDt4mZCLwGIkQsK4A5T2mNRy3YlaaNeZOBNKDipeNmUZxExNQZZkaMRUk2TGL2kuLJMm
YQNkpeDETbyVNhrS6VEkbkAaRNfEq4IgatYkol8mgizWlP/+ELl/OrXcnw4NHLLIg91O
aau1OCTPmmddi8bHtTT2wvmXRhMUPQoEsJc+XPi+MVlVqPBl8q9UTAl38DIFul5CWjLU
yNaaGE5OTuRlPXNzc/omqY2NjaWlpTZTJh1E3uK0urrab0PIJ/C6kDZpV8HPnj17cHDg
vwVwaKjdlElnwZWCE7q4uNhvQ8g/2dvbg4Kj+fTbEFJh2n0/+NHRkS/fqJr6AB4pCVCK
58+f99sK8n88fPjw2bNn/baCVJt2PWUZPIFzp69XPjk5gXxvbm5OTk52wkJCCCHptOuD
b2xsQLLHx8flrflQc9ynP378mPJNCCHdhqPVhBBSVfidTEIIqSpUcEIIqSr/P/ssgk7N
VoyzAAAAAElFTkSuQmCC
--============_-1109682702==_mr============--